浏览全部资源
扫码关注微信
1.安徽理工大学 地球与环境学院,安徽 淮南 232001
2.西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
3.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
4.西安石油大学 地球科学与工程学院,陕西 西安 710065
李百强,男,讲师,从事碳酸盐岩沉积与储层地质、常规与非常规油气地质等研究,15249246598@163.com。
李文厚,男,教授,博士生导师,从事沉积学、石油地质学等研究,liwenhou@nwu.edu.cn
纸质出版日期:2024-12-25,
收稿日期:2024-07-03,
移动端阅览
李百强, 郭艳琴, 徐宏杰, 等. 鄂尔多斯盆地靖边气田南部马五4亚段沉积相特征及演化[J]. 西北大学学报(自然科学版), 2024,54(6):993-1003.
LI BAIQIANG, GUO YANQIN, XU HONGJIE, et al. Characteristics and evolution of sub-member
李百强, 郭艳琴, 徐宏杰, 等. 鄂尔多斯盆地靖边气田南部马五4亚段沉积相特征及演化[J]. 西北大学学报(自然科学版), 2024,54(6):993-1003. DOI: 10.16152/j.cnki.xdxbzr.2024-06-005.
LI BAIQIANG, GUO YANQIN, XU HONGJIE, et al. Characteristics and evolution of sub-member
奥陶系马家沟组五段4亚段(以下简称“马五
4
亚段”)是靖边气田继马五
5
亚段之后重要的天然气接替产层之一,但其沉积微相研究相对薄弱,限制了对该气田马五
4
亚段的碳酸盐岩储层发育及天然气分布有利区的合理、准确预测。以靖边气田南部为例,在已有区域沉积背景研究成果的基础上,通过岩心观察、薄片鉴定和沉积相测井解释,识别研究区马五
4
亚段的沉积微相类型并刻画其平面展布特征,明确区内马五
4
亚段各小层沉积微相纵向演化规律。结果表明,靖边气田南部马五
4
亚段中、西部整体为局限台地亚相沉积,发育含灰云坪、灰云坪、含泥云坪、泥云坪、云泥坪以及含泥含灰云坪微相,蒸发台地主要分布于研究区东部,沉积微相类型以含膏云坪和含膏湖为主。马
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556684&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556691&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556688&type=
小层整体发育局限台地亚相,含泥云坪和泥云坪分布面积最广;马
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556696&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556708&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556705&type=
小层沉积时期,研究区东部蒸发台地沉积范围略有增加;马
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556712&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556747&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556730&type=
小层沉积时期,陆源泥质输入再次明显增加,中部地区广泛发育泥云坪沉积;马
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556749&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556754&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556760&type=
小层沉积时期,陆源泥质输入减少,区内广泛发育灰云坪沉积微相,局部地区发育蒸发台地亚相。沉积微相对天然气分布具有明显控制作用,灰云坪和含泥云坪为研究区马五
4
亚段天然气分布的有利沉积微相。研究成果可以为靖边气田碳酸盐岩储层分布有利区预测及天然气勘探开发方案部署提供科学依据。
As one of the critical replacement production layers following the Sub-member
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556774&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556772&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556780&type=
of the Ordovician Majiagou Formation in the Jingbian gas field
the sub-member
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556804&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556797&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556794&type=
is limited in the reasonable and accurate prediction for the carbonate reservoir development and natural gas distribution because of the weak analysis on the sedimentary microfacies. Taking the southern Jingbian gas field as an example
the sedimentary microfacies type were identified and the planar distribution law was described
and the evolution law of sedimentary microfacies of different layers from the sub-member
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556799&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556817&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556812&type=
was made clear in this paper through core observation
thin section identification and logging interpretation for sedimentary facies. The results show that the sedimentary subfacies of the sub-member
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556822&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556828&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556840&type=
is dominated by restricted platform in the central and western study area
including lime-bearing dolomite flat
calciferous dolomite flat
mud-bearing dolomite flat
argillaceous dolomite flat
dolomitic mud flat
and mud-lime bearing dolomite flat. The evaporation platform is mainly distributed in the eastern study area
and dominated by gypsiferous dolomite flat and gypsiferous lake. The
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556846&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556852&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556863&type=
layer is dominated by restricted platform
with the largest area of mud-bearing dolomite flat and mud dolomite flat development. During the sedimentary period of
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556853&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556878&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556858&type=
layer
the evaporation platform area in the eastern study area increased. The content of terrigenous mud increases again when in the
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556884&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556900&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556897&type=
layer sedimentary period resulting in the extensive development of mud dolomite flat in the central study area
while decreases during the
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556903&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556925&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556911&type=
layer sedimentary period resulting in the extensive distribution of calciferous dolomite flat development with local development of evaporation platform. The natural gas distribution is controlled obviously by sedimentary microfacies. The calciferous dolomite flat and mud-bearing dolomite flat are the favorable sedimentary microfacies for natural gas distribution of sub-member
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556916&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556938&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=70556920&type=
in the study area. The research results is helpful for the prediction of favorable carbonate reservoir distribution areas and the deployment of natural gas exploration and development scheme in Jingbian gas field.
沉积微相碳酸盐岩马家沟组靖边气田鄂尔多斯盆地
sedimentary microfaciescarbonate rockMajiagou FormationJingbian gas fieldOrdos Basin
邹才能, 谢增业, 李剑, 等. 典型碳酸盐岩大气田规模聚集差异性及其主控因素——以四川盆地安岳气田和鄂尔多斯盆地靖边气田为例[J]. 石油与天然气地质, 2023, 44(1): 1-15.
ZOU C N, XIE Z Y, LI J, et al. Differences and main controlling factors of large-scale gas accumulations in typical giant carbonate gas fields: A case study on Anyue gas field in the Sichuan Basin and Jingbian gas field in the Ordos Basin[J]. Oil & Gas Geology, 2023, 44(1): 1-15.
贾浪波, 刘海锋, 薛云龙, 等. 碳酸盐岩储层孔隙结构表征及储渗能力研究:以鄂尔多斯盆地靖边气田下古马五1+2储层为例[J]. 西安石油大学学报(自然科学版), 2023, 38(4): 38-46.
JIA L B, LIU H F, XUE Y L, et al. Characterization of pore structure of carbonate reservoirs and study of storage and seepage capacity of them: Taking Lower Paleozoic Ma 51+2 reservoir in Jingbian gas field of Ordos Basin as an example[J]. Journal of Xi'an Shiyou University (Natural Science), 2023, 38(4): 38-46.
付金华, 孙六一, 冯强汉, 等. 鄂尔多斯盆地下古生界海相碳酸盐岩油气地质与勘探[M]. 北京: 石油工业出版社, 2018.
何江川, 余浩杰, 何光怀, 等. 鄂尔多斯盆地长庆气区天然气开发前景[J]. 天然气工业, 2021, 41(8): 23-33.
HE J C, YU H J, HE G H, et al. Natural gas development prospect in Changqing gas province of the Ordos Basin[J]. Natural Gas Industry, 2021, 41(8): 23-33.
刘文汇, 王晓锋, 张东东, 等. 鄂尔多斯盆地靖边气田地球化学特征与成因再认识[J]. 西北大学学报(自然科学版), 2022, 52(6): 943-956.
LIU W H, WANG X F, ZHANG D D, et al. Restudy on geochemical characteristics and genesis of Jingbian gas field in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(6): 943-956.
李杰, 张振文, 刘顺治, 等. 靖边潜台北部奥陶系风化壳储层研究[J]. 沉积与特提斯地质, 2013, 33(1): 79-85.
LI J, ZHANG Z W, LIU S Z, et al. Ordovician karst weathering crust reservoirs on the northern Jingbian buried platform in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(1): 79-85.
魏丽, 马尚伟, 蒋子文. 靖边气田北部马家沟组马五段白云岩、方解石脉地球化学特征及成因[J]. 中国石油大学学报(自然科学版), 2022, 46(6): 59-69.
WEI L, MA S L, JIANG Z W. Geochemical characteristics and genesis of dolomite and calcite veins in the fifth member of Majiagou Formation in the northern Jingbian gas field[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6): 59-69.
贾浪波, 刘海锋, 薛云龙, 等. 靖边气田东侧陕X区块古地貌和气水分布规律[J]. 科学技术与工程, 2023, 23(12): 5022-5032.
JIA L B, LIU H F, XUE Y L, et al. Paleo-geomorphology and gas-water distribution law in Shaan X block on the east side of Jingbian gas field[J]. Science Technology and Engineering, 2023, 23(12): 5022-5032.
罗顺社, 金姗姗, 郝放, 等. 靖边潜台西侧奥陶系马家沟组马五4段沉积微相研究[J]. 海洋地质前沿, 2011, 27(11): 25-31.
LUO S S, JIN S S, HAO F, et al. Sedimetary facies of the ordovician Ma 54 in the western part of jingbian platforms[J]. Marine Geology Frontiers, 2011, 27(11): 25-31.
郭庆, 孙卫, 余小雷, 等. 靖边气田西部地区奥陶系顶部侵蚀面解释技术[J]. 西北大学学报(自然科学版), 2013, 43(6): 947-951.
GUO Q, SUN W, YU X L, et al. Interpretation techniques of the top Ordovician erosional surface in Jingbian gas field, western region of the Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(6): 947-951.
胡光明, 李国栋, 魏新善, 等. 靖边潜台西侧奥陶系马五4亚段岩相古地理特征[J]. 沉积学报, 2017, 35(3): 527-539.
HU G M, LI G D, WEI X S, et al. Lithofacies paleogeography research on Ordovician Majiagou 54 sub-member in the west Jingbian platform[J]. Acta Sedimentologica Sinica, 2017, 35(3): 527-539.
夏勇, 刘海锋, 袁继明, 等. 靖边气田南部古岩溶特征及有利储层发育[J]. 东北石油大学学报, 2013, 37(6): 25-31.
XIA Y, LIU H F, YUAN J M, et al. Paleokarst characteristics and favorable reservoir development in the southern Jingbian gas field[J]. Journal of Northeast Petroleum University, 2013, 37(6): 25-31.
司马立强, 黄丹, 韩世峰, 等. 鄂尔多斯盆地靖边气田南部古风化壳岩溶储层有效性评价[J]. 天然气工业, 2015, 35(4): 7-15.
SIMA L Q, HUANG D, HAN S F, et al. Effectiveness evaluation of palaeo-weathering crust-type karst reservoirs in the southern Jingbian gas field, Ordos Basin[J]. Natural Gas Industry, 2015, 35(4): 7-15.
李宝成. 靖边气田马家沟组碳酸盐岩储层特征及主控因素[J]. 东北石油大学学报, 2021, 45(4): 15-26.
LI B C. Characteristics of carbonate reservoir and its main controlling factors of Majiagou Formation in Jingbian gas field[J]. Journal of Northeast Petroleum University, 2021, 45(4): 15-26.
夏勇, 袁继明, 夏勇辉, 等. 靖边气田南部非边底型地层水分布主控因素及预测[J]. 东北石油大学学报, 2015, 39(2): 1-8.
XIA Y, YUAN J M, XIA Y H, et al. Non edge and bottom aquifer controlling factors and distribution forecast in southern Jingbian gas field[J]. Journal of Northeast Petroleum University, 2015, 39(2): 1-8.
马尚伟, 魏丽, 赵飞, 等. 鄂尔多斯盆地靖边气田奥陶系马家沟组热液活动特征及油气地质意义[J]. 天然气地球科学, 2023, 34(10): 1726-1738.
MA S W, WEI L, ZHAO F, et al. Characteristics of hydrothermal activity and petroleum geological significance of the Ordovician Majiagou Formation in Jingbian gas field, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(10): 1726-1738.
李朝旭, 秦启荣, 田国庆, 等. 靖边气田南部奥陶系马五1+2亚段储集层成岩演化特征[J]. 新疆石油地质, 2020, 41(2): 172-179.
LI Z X, QIN Q R, TIAN G Q, et al. Diagenetic evolution of the Ordovician Ma51+2 sub-member reservoir in the southern Jingbian gas field, Ordos Basin[J]. Xinjiang Petroleum Geology, 2020, 41(2): 172-179.
赵振宇, 孙远实, 李程善, 等. 鄂尔多斯盆地奥陶系地层划分与对比研究[J]. 特种油气藏, 2015, 22(5): 9-17.
ZHAO Z Y, SUN Y S, LI C S, et al. Stratigraphic division and correlation of Ordovician system in Ordos Basin[J]. Special Oil & Gas Reservoirs, 2015, 22(5): 9-17.
席胜利, 刘新社, 黄正良, 等. 鄂尔多斯盆地中奥陶统乌拉力克组页岩油气富集条件及勘探方向[J]. 天然气工业, 2023, 43(3): 12-22.
XI S L, LIU X S, HUANG Z L, et al. Enrichment characteristics and exploration direction of shale oil and gas in Wulalike Formation of Middle Ordovician in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(3): 12-22.
魏柳斌, 刘文汇, 王前平, 等. 鄂尔多斯盆地奥陶系盐下马四段高含硫天然气地球化学特征及成因[J]. 地质科学, 2024, 59(3): 683-695.
WEI L B, LIU W H, WANG Q P, et al. Geochemical characteristics and genesis of high sulfur natural gas in the fourth member of Majiagou Formation in the Ordovician sub-salt reservoirs, Ordos Basin[J]. Chinese Journal of Geology, 2024, 59(3): 683-695.
冯增昭, 鲍志东. 鄂尔多斯奥陶纪马家沟期岩相古地理[J]. 沉积学报, 1999, 17(1): 1-8.
FENG Z Z, BAO Z D. Lithofacies paleogeography of Majiagou age of Ordovician in Ordos Basin[J]. Acta Sedimentologica Sinica, 1999, 17(1): 1-8.
陈强, 李文厚, 孙娇鹏, 等. 鄂尔多斯盆地南缘岐山曹家沟奥陶系剖面地层和沉积特征[J]. 油气藏评价与开发, 2022, 12(1): 246-254.
CHEN Q, LI W H, SUN J P, et al. Ordovician stratigraphy and sedimentary characteristics of Caojiagou section in Qishan County, southern margin of Ordos Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 246-254.
魏柳斌, 陈洪德, 郭玮, 等. 鄂尔多斯盆地乌审旗——靖边古隆起对奥陶系盐下沉积与储层的控制作用[J]. 石油与天然气地质, 2021, 42(2): 391-400.
WEI L B, CHEN H D, GUO W, et al. Wushen-Jingbian Paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin[J]. Oil & Gas Geology, 2021, 42(2): 391-400.
郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2): 293-320.
GUO Y Q, LI W H, GUO B C, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320.
李文厚, 张倩, 陈强, 等. 鄂尔多斯盆地及周缘地区早古生代沉积演化[J]. 西北大学学报(自然科学版), 2020, 50(3): 456-479.
LI W H, ZHANG Q, CHEN Q, et al. Sedimentary evolution of Early Paleozoic in Ordos Basin and its adjacent areas[J]. Journal of Northwest University (Natural Science Edition), 2020, 50(3): 456-479.
李百强. 低渗、特低渗白云岩储层成岩相特征及识别[D]. 西安: 西北大学, 2020.
李百强, 张小莉, 王起琮, 等. 低渗-特低渗白云岩储层成岩相分析及测井识别——以伊陕斜坡马五段为例[J]. 岩性油气藏, 2019, 31(5): 70-83.
LI B Q, ZHANG X L, WANG Q C, et al. Analysis and logging identification of diagenetic facies of dolomite reservoir with low and ultra-low permeability: A case study from Ma 5 member in Yishan Slope, Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(5): 70-83.
AMEL H, JAFARIAN A, HUSINEC A, et al. Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin[J]. Marine and Petroleum Geology, 2015, 67: 57-71.
BEIGI M, JAFARIAN A, JAVANBAKHT M, et al. Facies analysis, diagenesis and sequencestratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impacts on reservoir quality (Salman Oil Field, Persian Gulf, Iran)[J]. Journal of African Earth Sciences, 2017, 129: 179-194.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构