浏览全部资源
扫码关注微信
1.陕西煤业化工集团神木张家峁矿业有限公司,陕西 神木 719316
2.西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
3.中国煤炭科工西安研究院〔集团〕有限公司,陕西 西安 710054
4.陕西省煤矿水害防治技术重点实验室,陕西 西安 710077
杨帆,男,高级工程师,从事煤矿开采技术研究,1311717786@qq.com。
黄雷,男,教授,从事盆地分析和油气勘探研究,huanglei@nwu.edu.cn。
纸质出版日期:2024-04-25,
收稿日期:2022-11-17,
扫 描 看 全 文
杨帆, 热西提· 亚力坤, 薛小渊, 等. 浅埋煤层烧变岩地球化学与变质矿物相特征[J]. 西北大学学报(自然科学版), 2024,54(2):329-344.
YANG Fan, YALIKUN Re Xiti, XUE Xiaoyuan, et al. Geochemistry and metamorphic mineral facies of burned rocks in shallow coal beds[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):329-344.
杨帆, 热西提· 亚力坤, 薛小渊, 等. 浅埋煤层烧变岩地球化学与变质矿物相特征[J]. 西北大学学报(自然科学版), 2024,54(2):329-344. DOI: 10.16152/j.cnki.xdxbzr.2024-02-017.
YANG Fan, YALIKUN Re Xiti, XUE Xiaoyuan, et al. Geochemistry and metamorphic mineral facies of burned rocks in shallow coal beds[J]. Journal of Northwest University (Natural Science Edition), 2024,54(2):329-344. DOI: 10.16152/j.cnki.xdxbzr.2024-02-017.
以陕北张家峁井田延安组2
2
,3
1
段烧变岩为研究对象,对其进行岩石地球化学迁移规律以及变质矿物相特征分析。结果表明,该区烧变岩为低碱性硅铝质变质岩,横向上钙碱性分布不均一,少部分烧变样品烧失量大且CaO含量高,Fe元素迁移聚集。Zr相容性比Hf更好,Ba元素富集可能与后期水文作用有关,稀土元素分配趋势线为略微轻稀土富集型,烧变作用对稀土元素的分配影响相对有限。烧变岩原生矿物多具有烧蚀特征,镜下发育烧蚀边、气孔构造等,新生矿物呈集合体充填矿物间或矿物裂缝中。矿物相组合与热接触变质作用中发生高热变质的透长岩相相近,但变质压力更低,温度更高。烧变岩层由下而上可分为薄层板状烧烤岩、烧熔岩、厚层板状烧烤岩、厚层层状烧烤岩的岩石组合,鳞石英+方石英相较莫来石+堇青石+赤铁矿能更好表征岩石烧变程度的强弱,同层烧烤岩下部烧变程度高于上部,烧熔岩上部板状烧烤岩烧变程度高于下部板状烧烤岩。研究区烧变岩具有“隐伏”的特点,且存在同沉积期烧变作用,除暴露在河谷阶地的烧变岩层外,部分烧变岩层埋于更新世地层和残余延安组地层之下。早期形成的烧变岩层后期被破坏,多期烧变地层相互叠置形成现今火烧区。
The study focuses on the burnt rocks of the 2
2
and 3
1
sections of the Yan’an Formation in Zhangjiamao Coalfield
Northern Shaanxi
and analyzes their geochemical migration patterns and metamorphic mineral facies characteristics. The results indicate that the burnt rocks in this area are low alkaline silicoaluminal metamorphic rocks
with uneven distribution of calcium and alkali horizontally. A small number of burnt rock samples have high loss on ignition and high CaO content
with Fe elements migrate and accumulate. Zr has better compatibility than Hf
and the enrichment of Ba element may be related to later hydrological processes. The trend line of rare earth element distribution is little L-REE enrichment
and the effect of burning on the distribution of rare earth elements is relatively limited. The primary minerals in burnt rocks often exhibit ablative characteristics
with the development of ablative edges and pore structures under the microscope. Newly formed minerals form aggregates and fill mineral spaces or fractures. The mineral facies combination is similar to the diorite facies that undergoes high thermal metamorphism during thermal contact metamorphism
but the metamorphic pressure is lower and the temperature is higher. The burnt rock layers can be divided from bottom to top into a combination of thin plate-like burnt rock
burnt lava
thick plate-like burnt rock
and thick layered burnt rock. tridymite+ cristobalite content can better characterize the burning degreecompared to mullite+ cordierite+ hematite content. The degree of burning in the lower part of the same layer burnt rock is higher than that in the upper part
and the burning degree of plate-like burnt rock in the upper part of the burnt lava is higher than that in the lower part. The burnt rocks in the research area have the " hidden" characteristic and have the same sedimentary period burnt effect. Except for the burnt rock layers exposed in the valley terrace
some of the burnt rock layers are buried under the Pleistocene strata and residual yan’an Formation strata. The early formation of burnt rock layers was later destroyed
and multiple stages of burnt rock layers overlapped to form the current burnt area.
烧变岩张家峁井田地球化学变质矿物相热接触变质作用透长岩相
burnt rockZhangjiamao minefieldgeochemistrymetamorphic mineral faciesthermal contact metamorphismdiorite facies
黄雷, 刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报, 2014, 88(9):1753-1761.
HUANG L, LIU C Y. Products of combustion of the Yan′an formation coal seam and their characteristics in the Northeastern Ordos Basin, China[J]. Acta Geologica Sinica, 2014, 88(9):1753-1761.
孙云博, 孙文植, 焦振华. 陕北烧变岩的工程地质特征[J]. 三峡大学学报(自然科学版), 2019, 41(增刊):71-73.
SUN Y B, SUN W Z, JIAO Z H. Engineering geological characteristics of burnt rock in Northern Shaanxi[J]. Journal of China Three Gorges University(Natural Sciences), 2019, 41(S):71-73.
ZHANG L, LIU C Y, FAYEK M, et al.Hydrothermal mineralization in the sandstone-hosted Hangjinqi uranium deposit, North Ordos Basin, China[J]. Ore Geology Reviews, 2017, 80(1):103-115.
陈彬. 中国西北地区侏罗系中烧变岩的特征、形成时代及地质意义[D]. 成都: 成都理工大学, 2021.
江桂, 史朝洋. 高精度磁法在煤田火烧区圈定中的应用[J]. 内蒙古煤炭经济, 2016, 115(2):152-154.
JIANG G, SHI C Y. Application of high-precision magnetic method in delineating coalfield fire zones [J]. Inner Mongolia Coal Economy, 2016, 115(2): 152-154.
袁利东, 屈波. 磁法勘探在内蒙古准格尔旗煤层火烧区探测中的应用[J]. 山西煤炭, 2010, 30(2):74-76.
YUAN L D, QU B. Fired coal seam exploration with magnetic method in Zunger Area[J]. Shanxi Coal, 2010, 30(2):74-76.
闫朝波. 张家峁煤矿煤层顶板涌(突)水危险性分区预测研究[D]. 西安: 西安科技大学, 2013.
姬中奎. 张家峁井田烧变岩与水库水力联系及帷幕截流技术研究[D]. 西安: 西安科技大学, 2018.
孙强, 王少飞, 葛振龙, 等. 基于热声发射技术的陕北火烧岩烧变温度识别[J]. 煤田地质与勘探, 2022, 50(5):82-88.
SUN Q, WANG S F, GE Z L, et al.Identification of burning temperature of burnt rocks in northern Shaanxi based on thermoacoustic emission technology[J]. Coal Geology & Exploration, 2022, 50(5):82-88.
侯恩科, 谢晓深, 冯栋, 等. 浅埋煤层开采地面塌陷裂缝规律及防治方法[J]. 煤田地质与勘探, 2022, 50(12):30-40.
HOU E K, XIE X S, FENG D, et al. Laws and prevention methods of ground cracks in shallow coal seammining[J]. Coal Geology & Exploration, 2022, 50(12):30-40.
王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1):8-15.
WANG S M, SUN Q, QIAO J W, et al.Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15.
孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5):935-942.
SUN Q, ZHANG Z Z, XUE L, et al.Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5):935-942.
王家乐. 张家峁井田22煤烧变岩地下水流场数值模拟[D]. 西安: 西安科技大学, 2017.
陈练武, 冯富成. 陕西神府煤田新民区煤层自燃及其烧变特征[J]. 西安矿业学院学报, 1991, 8(3):53-58.
CHEN L W, FENG F C. Characteristics of coal seam spontaneous combustion and its alteration in Xinmin District, Shenfu Coalfield, Shaanxi [J]. Journal of Xi'an Institute of Mining and Technology, 1991, 8(3): 53-58.
鄢明才, 迟清华, 顾铁新, 等. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997, 21(6):451-459.
YAN M C, CHI Q H, GU T X, et al. A study on the abundance of crustal elements and the average chemical composition of rocks in eastern China [J]. Geophysical and Geochemical Exploration, 1997, 21(6):451-459.
SCOTT M, MCLENNAN S, TAYLORS R. Geochemical constraints on the growth of the continental crust[J]. The Journal of Geology, 1982, 90(4):347-361.
MICHARD A. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1989, 53(3):745-750.
JOHN W G, JAMES T C, JOHN S O, et al.Paleomagnetic assessment of oroflexural deformation in west-central Nevada and significance for emplacement of allochthonous assemblages[J]. Tectonics, 1984, 3(2):179-200.
ELDERFIELD H, HAWKESWORTH C J, GREAVES M J, et al.Rare earth element zonation in Pacific ferromanganese nodules[J]. Geochimica et Cosmochimica Acta, 1981, 45(7):1231-1234.
杨小康. 煤层自燃对含煤盆地陆源碎屑岩的改造作用[D]. 成都: 成都理工大学, 2017.
王志宇, 史波波, 刘鹏. 煤田火区烧变岩成岩机理与利用[J]. 科学技术与工程, 2020, 20(15): 6004-6010.
WANG Z Y, SHI B B, LIU P. Formation and utilization of burnt rock in coalfield fire area[J]. Science Technology and Engineering, 2020, 20(15): 6004-6010.
邢东明, 李勇, 张秀华, 等. 热风炉高温区用硅砖中鳞石英的结构演变[J]. 硅酸盐学报, 2019, 47(12):1818-1824.
XING D M, LI Y, ZHANG X H, et al.Behavior of tridymite in silica bricks at high-temperature zone in hot stove[J]. Journal of the Chinese Ceramic Society, 2019, 47(12):1818-1824.
廖世勇, 王英, 蒋云, 等. 钙长辉长无球粒陨石中普通石英与鳞石英成因研究[J]. 地质学报, 2021, 95(9):2909-2919.
LIAO S Y, WANG Y, JIANG Y, et al.Genesis of quartz and tridymite in Eucrites[J]. Acta Geologica Sinica, 2021, 95(9):2909-2919.
黄雷, 刘池洋. 烧变岩岩石学及稀土元素地球化学特征[J]. 地球科学(中国地质大学学报), 2008, 33(4):515-522.
HUANG L, LIU C Y. Petrologic and REE geochemical characters of Burnt Rocks.[J]. Earth Science(Journal of China University of Geosciences), 2008, 33(4):515-522.
杜佳宗, 蔡进功, 谢忠怀, 等. 泥岩埋藏成岩过程中绿泥石的演化途径及意义[J]. 高校地质学报, 2018, 24(3):371-379.
DU J Z, CAI J G, XIE Z H, et al.Chloritization sequences in mudstone during diagenesis and its geological significance[J]. Geological Journal of China Universities, 2018, 24(3):371-379.
李景阳, 朱立军, 梁风, 等. 碳酸盐岩残积红黏土微观结构的扫描电镜研究[J]. 中国岩溶, 2002, 21(4):2-7.
LI J Y, ZHU L J, LIANG F, et al. Study with scanning electron microscope on micro-texture of the residual red clay from carbonate rocks[J]. Carsologica Sinica, 2002, 21(4):2-7.
刘长龄. 论烧变矿床与烧变岩研究及其意义[J]. 地质找矿论丛, 1988, 3(3):54-61.
LIU C L. On the study of Burnt Deposits and Burnt Rocks and their significance [J]. Geological Exploration Review, 1988, 3(3):54-61.
贺同兴, 卢良兆, 李树勋, 等. 变质岩岩石学[M]. 北京: 地质出版社, 1988.
蔡周荣, 卢丽娟, 黄强太, 等. 红河断裂带类微生物状纳米颗粒的发现及其构造意义[J]. 大地构造与成矿学, 2021, 45(2):270-279.
CAI Z R, LU L J, HUANG Q T, et al.Discovery of microbial-like Nanoparticles in the Red River Fault Zone and its tectonic significance[J]. Geotectonica et Metallogenia, 2021, 45(2):270-279.
葛绍坤, 史波波. 煤火烧变作用下岩石微观结构与力学特性的变化[J]. 矿业研究与开发, 2020, 40(12):64-70.
GE S K, SHI B B. The change of microstructure and mechanical properties of rocks under coal fire burning effect[J]. Mining Research and Development, 2020, 40(12):64-70.
李军华. 黏土矿物分析及其在石油地质应用中存在的问题[J]. 石化技术, 2016, 23(6):38.
LI J H. Clay mineral analysis and some problems of application in petroleum geology[J]. Petro-chemical Technology, 2016, 23(6):38.
杨凯, 文雪琴. 自燃后煤矸石的XRD定性分析[J]. 煤炭技术, 2017, 36(1):313-314.
YANG K, WEN X Q, XRD qualitative analysis of spontaneous combustion of coal gangue[J]. Coal Technology, 2017, 36(1):313-314.
侯恩科, 杨斯亮, 文强, 等. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全, 2022, 53(11):191-199.
HOU E K, YANG S L, WEN Q, et al.Characteristics and water abundance evaluation of concealedburning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2022, 53(11): 191-199.
尚桂林, 蒋新民, 刘大民. 神木北部侏罗纪煤层自燃因素及其烧变特征[J]. 中国煤田地质, 1990, 2(1):29-33.
SHANG G L, JIANG X M, LIU D M. Factors and characteristics of spontaneous combustion of Jurassic coal seams in Northern Shenmu[J]. Coalfield Geology of China, 1990, 2(1): 29-33.
陈练武, 冯富成. 陕西神府煤田新民区煤层自燃及其烧变特征[J]. 西安矿业学院学报, 1991, 1(3):53-58.
CHEN L W, FENG F C. Characteristics of coal seam spontaneous combustion and its alteration in Xinmin District, Shenfu Coalfield, Shaanxi[J]. Journal of Xi'an Institute of Mining and Technology, 1991, 1(3):53-58.
时志强, 王美玲, 陈彬. 中国北方烧变岩的分布、特征及研究意义[J]. 古地理学报, 2021, 23(6):1067-1081.
SHI Z Q, WANG M L, CHEN B. Distribution, characteristics, and significances of burnt rocks in Northern China [J]. Journal of Paleogeography, 2021, 23(6):1067-1081.
王小端. 东胜神山沟烧变岩:从干旱到湿润气候变化的反映[D]. 成都: 成都理工大学, 2019.
袁宝印, 郭正堂, 郝青振, 等. 天水—秦安一带中新世黄土堆积区沉积-地貌演化[J]. 第四纪研究, 2007, 27(2):161-171.
YUAN B Y, GUO Z T, HAO Q Z, et al.Sedimentary and geomorphological evolution of the Miocene loess accumulation area in the Tianshui-Qin′an area [J]. Quaternary Research, 2007, 27(2):161-171.
郭顺, 王震亮, 闫继福. 陕北地区侏罗系层序地层与油气聚集关系[J]. 地层学杂志, 2010, 34(2):212-218.
GUO S, WANG Z L, YAN J F. Relationship between Jurassic sequence stratigraphy and oil and gas accumulation in the Northern Shaanxi Region [J]. Journal of Stratigraphy, 2010, 34(2): 212-218.
张泓, 晋香兰, 李贵红, 等. 鄂尔多斯盆地侏罗纪—白垩纪原始面貌与古地理演化[J]. 古地理学报, 2008, 10(1):1-11.
ZHANG H, JIN X L, LI G H, et al.Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Paleogeography, 2008, 10(1):1-11.
许云. 中国西北地区中侏罗世煤中古野火证据及对古气候的影响[D]. 北京: 中国矿业大学(北京), 2019.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构