1.西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
2.中国科学院/水利部 成都山地灾害与环境研究所,四川 成都 610041
娄灿昀,女,从事泥石流运动机理研究,690686423@qq.com。
王飞,男,讲师,博士,从事泥石流运动机理、山地灾害防治等研究,wf@nwu.edu.cn。
扫 描 看 全 文
娄灿昀, 王飞, 王家鼎, 等. 泥石流中球形巨石运动规律模型试验研究[J]. 西北大学学报(自然科学版), 2024,54(1):133-144.
LOU Canyun, WANG Fei, WANG Jiading, et al. Model experimental study on the movement of spherical boulders in debris flow[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):133-144.
娄灿昀, 王飞, 王家鼎, 等. 泥石流中球形巨石运动规律模型试验研究[J]. 西北大学学报(自然科学版), 2024,54(1):133-144. DOI: 10.16152/j.cnki.xdxbzr.2024-01-015.
LOU Canyun, WANG Fei, WANG Jiading, et al. Model experimental study on the movement of spherical boulders in debris flow[J]. Journal of Northwest University (Natural Science Edition), 2024,54(1):133-144. DOI: 10.16152/j.cnki.xdxbzr.2024-01-015.
该研究通过室外水槽模型试验,模拟了不同直径巨石与不同密度泥石流完全固液耦合作用下的运动状态,分析了泥石流沟内巨石在泥石流中的运动模式、运动的影响因素及其在泥石流中的受力情况,并探讨了泥石流密度与巨石粒径对其运动速度的影响。研究结果表明:巨石在运动过程中可能出现滚动、跳跃与滑动等运动模式,巨石出现的运动模式同泥石流的密度以及巨石粒径有关;巨石的直径越大,运动速度越小,它在泥石流中的运动模式越简单,越倾向于发生滚动运动,在泥石流流体中的跟随性越好,速度比,n,越容易趋近于1;巨石粒径对巨石运动速度的影响大于泥石流密度对它的影响。
This study, an outdoor flume model test, was to model the movement of different-diameter boulders under the complete fluid-solid coupling with different-density landslides, analyze the movement patterns of boulders in landslides, the factors influencing the movement of boulders, and the force condition of boulders in a landslide and also explore the effect of the debris flow density and boulder diameters on the velocity of the boulders in landslides. The study found that the movement of boulders may be rolling, leaping or sliding, which is related to their density and diameter. That is, the greater the boulder’s diameter and the smaller its velocity, the simpler its movement pattern in the landslide, it is more likely to roll, the better its following behaviour in the landslide; also, it is more likely for the speed ratio (,n,) to approach 1. The study showed that the boulder diameter affects boulder velocity more greatly than the landslide density.
泥石流球形巨石水槽试验运动规律
debris flowspherical bouldersflume model testmovement pattern
孙昊, 赵万玉, 游勇, 等. 梯-潭结构型泥石流排导槽消能特征试验研究[J]. 防灾减灾工程学报, 2019, 39(1): 132-140.
SUN H, ZHAO W Y, YOU Y, et al. Experimental study on energy dissipation characteristics of debris flow in a drainage channel with step-pool configuration[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1): 132-140.
万飞鹏, 杨为民, 渠敬凯, 等.甘肃岷县中寨沟流域内泥石流发育差异的主控因素分析[J].防灾减灾工程学报, 2022, 42(4): 683-694.
WAN F P, YANG W M, QU J K, et al. Analysis on main controlling factors of debris flow development differencein Zhongzhai gully basin of Minxian County, Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 683-694.
SU Y, CHOI C E, NG C W W, et al. New light-weight concrete foam to absorb debris-flow-entrained boulder impact: Large-scale pendulum modelling[J].Engineering Geology, 2020, 275: 105724.
LUO G, ZHAO Y J, SHEN W G, et al. Dynamics of bouldery debris flow impacting onto rigid barrier by a coupled SPH-DEM-FEM method[J]. Computers and Geotechnics, 2022, 150: 104936.
赵琰鑫. 沟道泥石流运动—淤塞—堵溃数值模拟研究[D]. 武汉: 武汉大学, 2012.
王飞, 陈晓清, 李云, 等. 拦砂坝淤满后沟道中巨石与泥石流浆体的流固耦合分析[J]. 科学技术与工程, 2015, 15(10): 14-20.
WANG F, CHEN X Q, LI Y, et al, Fluid-solid coupling analysis of boulder rolling in channel after silt dam based on flow-3d[J]. Science Technology and Engineering, 2015, 15(10): 14-20.
陈红. 泥石流中巨砾的启动、搬运规律以及冲击力研究[D]. 成都: 成都理工大学, 2016.
汤碧辉, 孙红月. 泥石流中大颗粒的起动与水流条件的关系[J]. 自然灾害学报, 2017, 26(3): 132-138.
TANG B H, SUN H Y. Relationships between starting motion of large-sized particles in debris flow and water flow condition[J]. Journal of Natural Disasters, 2017, 26(3): 132-138.
汤碧辉, 孙红月, 胡杭辉, 等. 黏性泥石流对球型大颗粒启动的临界条件分析[J]. 工程地质学报, 2018, 26(6): 1631-1637.
TANG B H, SUN H Y, HU H H, et al, Analysis on critical by hadraulic condition for starting motion of large-sized particles in viscous debris flow[J]. Journal of Engineering Geology, 2018, 26(6): 1631-1637.
WANG F, WANG J D, CHEN X Q, et al. Numerical simulation of boulder fluid-solid coupling in debris flow: A case study in Zhouqu County, Gansu Province, China[J]. Water, 2022, 14 (23): 3884.
LORANG M S. A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis[J]. Marine Geology, 2011, 283(1/2/3/4): 90-97.
ENGEL M, MAY S M. Bonaire’s boulder fields revisited: Evidence for Holocene tsunami impact on the Leeward Antilles[J]. Quaternary Science Reviews, 2012, 54: 126-141.
LAU A Y A, TERRY J P, SWITZER A D, et al. Advantages of beachrock slabs for interpreting high-energy wave transport: Evidence from Ludao Island in south-eastern Taiwan[J]. Geomorphology, 2015, 228: 263-274.
MAY S M, ENGEL M, BRILL D, et al. Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan[J]. Earth Surface Dynamics, 2015, 3(4): 543-558.
SORIA J L A, SWITZER A D, PILARCZYK J E, et al. Surf beat-induced overwash during Typhoon Haiyan deposited two distinct sediment assemblages on the carbonate coast of Hernani, Samar, central Philippines[J]. Marine Geology, 2018, 396: 215-230.
胡桂胜, 陈宁生, 邓明枫, 等. 甘肃舟曲三眼峪沟泥石流粗大颗粒冲击力特征分析[J]. 地球与环境, 2011, 39(4): 478-484.
HU G S, CHEN N S, DENG M F, et al. Analysis of the characteristics of impact force of massive stones of the Sanyanyu debris flow gully in Zhouqu, Gansu Province[J]. Earth and Environment, 2011, 39(4): 478-484.
PERERA S, LAM N, PATHIRANA M, et al. Deterministic solutions for contact force generated by impact of windborne debris[J]. International Journal of Impact Engineering, 2016, 91: 126-141.
YAN P, ZHANG J H, FANG Q, et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs[J]. Construction and Building Materials, 2018, 160: 497-504.
吕庆, 孙红月, 翟三扣, 等. 边坡滚石运动的计算模型[J]. 自然灾害学报, 2003, 12(2): 79-84.
LYU Q, SUN H Y, ZHAI S K, et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters, 2003, 12(2): 79-84.
夏军强, 古安川, 舒彩文, 等. 洪水中人体稳定性条件的理论分析及试验研究[J]. 灾害学, 2014, 29(2): 4-11.
XIA J Q, GU A C, SHU C W, et al. Criterion of human stability in floodwaters based on theoretical and experimental studies[J]. Journal of Catastrophology, 2014, 29(3): 4-11.
BRESSAN L, GUERRERO M, ANTONINI A, et al. A laboratory experiment on the incipient motion of boulders by high-energy coastal flows[J]. Earth Surface Processes and Landforms, 2018, 43(14): 2935-2947.
LODHI H A, HASAN H, NANDASENA N A K. The role of hydrodynamic impact force in subaerial boulder transport by tsunami-experimental evidence and revision of boulder transport equation[J]. Sedimentary Geology, 2020, 408: 105745.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构