西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
张妍,女,助理工程师,从事副矿物U-Pb定年研究,2498644511@qq.com。
[ "袁洪林,西北大学地质学系教授,大陆动力学国家重点实验室副主任,博士生导师,国家杰出青年基金获得者。主持多项国家自然科学基金面上、重点项目和国家重大科研仪器研制等项目。入选“全球学者学术影响力排行榜”,荣获孙贤鉥奖、教育部新世纪优秀人才支持计划、侯德封矿物岩石地化青年科学家奖、World Laboratory Wilhelm Simon Fellowships等奖项。主要从事激光剥蚀等离子体质谱微区元素/同位素分析相关的新技术、新方法的开发及其在地球科学中的应用研究。在国内外核心刊物上发表SCI论文200余篇,H-index为43。SCI论文共被引用15 000余次;7篇论文入选ISI高引用率论文。获国家发明专利8项,美国专利2项。" ]
扫 描 看 全 文
张妍, 包志安, 陈开运, 等. LA-ICP-MS磷灰石-榍石U-Pb定年测试[J]. 西北大学学报(自然科学版), 2023,53(6):1030-1040.
ZHANG Yan, BAO Zhian, CHEN Kaiyun, et al. In situ U-Pb dating of apatite-titanite by LA-ICP-MS[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):1030-1040.
张妍, 包志安, 陈开运, 等. LA-ICP-MS磷灰石-榍石U-Pb定年测试[J]. 西北大学学报(自然科学版), 2023,53(6):1030-1040. DOI: 10.16152/j.cnki.xdxbzr.2023-06-012.
ZHANG Yan, BAO Zhian, CHEN Kaiyun, et al. In situ U-Pb dating of apatite-titanite by LA-ICP-MS[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):1030-1040. DOI: 10.16152/j.cnki.xdxbzr.2023-06-012.
利用西北大学大陆动力学国家重点实验室Agilent 7900四极杆电感耦合等离子体质谱和RESOLution S-155LR 193 nm ArF准分子激光,激光频率为6 Hz,束斑为67 μm(磷灰石)、43 μm(榍石),分别对5个标准磷灰石(Sume、Durango、Otter Lake、AP1和MRC-1)和4个标准榍石(Ontario、T4、T3和Pakistan)进行了原位微区U-Pb同位素测定。以MAP-3为标准样品,结合,207,Pb普通铅扣除法,测定了磷灰石样品U-Pb加权平均年龄,结果为:Sume(566.7±5.3)Ma、Durango(31.2±0.6)Ma、Otter Lake(901.3±9.6)Ma、AP1(472.0±3.9)Ma、MRC-1(155.4±1.8)Ma;以榍石BLR-1为外标,通过,207,Pb普通铅扣除法,测定了不同榍石样品U-Pb加权平均年龄,结果为:Ontario(1 044.4±4.2)Ma、T4(1 096.2±5.6)Ma、Pakistan(20.74±0.61)Ma、T3(1 102.9±5.8)Ma。各个样品年龄测定值在误差范围内与推荐值一致。结果表明,该研究方法可以准确地对磷灰石、榍石进行原位微区U-Pb定年测定,数据结果准确度高且可靠。磷灰石U-Pb定年测试方法的建立对于研究中温热年代学提供了重要的年龄信息。榍石U-Pb定年测试方法的建立对于探讨与变质作用和热液作用相关的年龄信息、查明地质体的P-T-t轨迹提供了重要的证据。
The age of Sume, Durango, Otter Lake, AP1, MRC-1 standard apatites, and Ontario, T4, T3, Pakistan standard titanites were determined simultaneously by using Agilent 7900 inductively coupled plasma mass spectrometry and RESOLution S-155LR 193 nm ArF excimer laser ablation at the State Key Laboratory of Continental Dynamics, Northwest University, with laser frequency of 6 Hz and laser ablation spot size of 67 μm (apatite) and 43 μm(titanite). Using MAP-3 apatite as an external standard combined with ,207,Pb-correction method, the U-Pb weighted average ages of apatite samples, Sume(566.7±5.3)Ma, Durango(31.2±0.6)Ma, Otter Lake(901.3±9.6)Ma, AP1(472.0±3.9)Ma, MRC-1(155.4±1.8)Ma can be determined accurately.Using BLR-1titanite as an external standard combined with ,207,Pb-correction method, the U-Pb weighted average ages of titanite samples, Ontario(1 044.4±4.2)Ma, T4(1 096.2±5.6)Ma, Pakistan(20.74±0.61)Ma, T3(1 102.9±5.8)Ma can be determined accurately. These results are consistent with the recommended values within a reasonable range of error. The research results indicate that the established method can accurately determine the in-situ U-Pb dating of apatite and titanite, with high accuracy and reliability of the data results. The establishment of in situ apatite U-Pb provides important age information for medium temperature thermochronology studies. The establishment of in situ titanite U-Pb provides important evidences for exploring age information related to metamorphic and hydrothermal processes, and identifying P-T-t trajectories of geological bodies.
LA-ICP-MS磷灰石榍石U-Pb定年
LA-ICP-MSapatitetitaniteU-Pb dating
李献华, 李扬, 李秋立, 等. 同位素地质年代学新进展与发展趋势[J]. 地质学报, 2022, 96(1): 104-122.
LI X H, LI Y, LI Q L, et al. Progress and prospects of radiometric geochronology[J]. Acta Geologica Sinica, 2022, 96(1): 104-122.
ALEINIKOFF J N, SCHENCK W S, PLANK M O, et al. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite[J]. Geological Society of America Bulletin, 2006, 118(1/2): 39-64.
LING X X, HUYSKENS M H, LI Q L, et al. Monazite RW-1: A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis[J]. Mineralogy and Petrology, 2017, 111(2): 163-172.
ALEINIKOFF J N, WINTSCH R P, TOLLO R P, et al. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England[J]. American Journal of Science, 2007, 307(1): 63-118.
MA Q, EVANS N J, LING X X, et al. Natural titanite reference materials for in situ U-Pb and Sm-Nd isotopic measurements by LA-(MC)-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 355-384.
THOMSON S N, GEHRELS G E, RUIZ J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry Geophysics Geosystems, 2012, 13: Q0AA21.
YANG M, YANG Y H, WU S T, et al. Accurate and precise in situ U-Pb isotope dating of wolframite series minerals via LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2191-2203.
YANG M, ROMER R L, YANG Y H, et al. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754.
WEI Q D, YANG M, ROMER R L, et al. In situ U-Pb geochronology of vesuvianite by LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 69-81.
赵晗. 赵晗.激光U-Pb定年和Sr-Nd同位素标样研发:以钙铁榴石和单斜辉石为例[D]. 北京: 中国科学院大学, 2022.
AYSAL N, GUILLONG M, BAYANOVA T, et al. A new natural secondary reference material for garnet U-Pb dating by TIMS and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2023, 47(2): 297-310.
HUANG C, WANG H, YANG J H, et al. RKV01 Rutile-A new potential archaean reference material for microbeam U-Pb dating[J]. Geostandards and Geoanalytical Research, 2023.DOI: 10.1111/ggr.1252810.1111/ggr.12528.
XIANG L, WANG R C, ROMER R L, et al. Columbite SN3: A new potential reference material for U-Pb dating by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2023, 47(3): 609-628.
TANG Y W, LAN T G, GAO J F, et al. A new appraisal of ilmenite U-Pb dating method by LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2023.DOI: 10.1039/d3ja00209h10.1039/d3ja00209h.
LIU Y S, GAO S, HU Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
PATON C, WOODHEAD J D, HELLSTROM J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06.
李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418.
LI Y G, WANG S S, LIU M W, et al. U-Pb dating study of baddeleyite by LA-ICP-MS: Technique and application[J]. Acta Geologica Sinica, 2015, 89(12): 2400-2418.
LIU G Q, ZHAO K D, ULRICH T, et al. Isoclock: A free and novel routine for common Pb correction in UThPb data reduction of LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(10): 2007-2018.
罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物U-Th-Pb定年新进展[J]. 地球科学, 2022, 47(11): 4122-4144.
LUO T, HU Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry[J]. Earth Science, 2022, 47(11): 4122-4144.
HE C G, LI J W, KONTAK D J, et al. An Early Cretaceous gold mineralization event in the Triassic West Qinling orogen revealed from U-Pb titanite dating of the Ma′anqiao gold deposit[J]. Science China Earth Sciences, 2023, 66(2): 316-333.
VAFEAS N A, SLEZAK P, CHEW D, et al. U-Pb Dating of apatite from silvermines deposit, Ireland: A model for hydrothermal ore genesis[J]. Economic Geology, 2023, 118(6): 1521-1527.
LI B, XU D R, BAI D Y, et al. Structural deformation, metallogenic epoch and genetic mechanism of the Woxi Au-Sb-W deposit, Western Hunan Province, South China[J]. Science China Earth Sciences, 2022, 65(12): 2358-2384.
ZHAO W W, ZHOU M F, DUDKA S. In situ U-Pb dating of garnet and cassiterite from the kanbauk W-Sn(-F) skarn deposit, Dawei region, southern Myanmar: new insights on the regional Sn-W metallogeny in the southeast Asian Tin belt[J]. Economic Geology, 2023, 118(5): 1219-1229.
PICCOLI P M, CANDELA P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292.
SPEAR F S, PYLE J M. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 293-335.
MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124: 3-29.
LASLETT G M, GREEN P F, DUDDY I R, et al. Thermal annealing of fission tracks in apatite II: A quantitative analysis[J]. Chemical Geology, 1987, 65(1): 1-13.
FARLEY K A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2903-2914.
CHAMBERLAIN K R, BOWRING S A. Apatite-feldspar U-Pb thermochronometer: A reliable, mid-range (~ 450 ℃), diffusion-controlled system[J]. Chemical Geology, 2001, 172(1/2): 173-200.
SCHOENE B, BOWRING S A. Determining accurate temperature-time paths from U-Pb thermochronology: An example from the Kaapvaal craton, southern Africa[J]. Geochimica Et Cosmochimica Acta, 2007, 71(1): 165-185.
赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744-753.
ZHAO L H, ZHAN X C, ZENG L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744-753.
LANA C, GONÇALVES G O, MAZOZ A, et al. Assessing the U-Pb, Sm-Nd and Sr-Sr Isotopic Compositions of the Sume apatite as a reference material for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 71-95.
BARFOD G H, KROGSTAD E J, FREI R, et al. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1847-1859.
MCDOWELL F W, MCINTOSH W C, FARLEY K A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3/4): 249-263.
APEN F E, WALL C J, COTTLE J M, et al. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry[J]. Chemical Geology, 2022, 590: 120689.
DUAN L J, ZHANG L L, ZHU D C, et al. Apatite MAP-3: A new homogeneous and low common lead natural reference for laser in situ U-Pb dating and Nd isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(7): 1478-1493.
CHERNIAK D J. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport[J]. Chemical Geology, 1993, 110: 177-194.
SCOTT D J, STONGE M R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations[J]. Geology, 1995, 23(12): 1123-1126.
FROST B R, CHAMBERLAIN K R, SCHUMACHER J C. Sphene (titanite): Phase relations and role as a geochronometer[J]. Chemical Geology, 2001, 172(1/2): 131-148.
SPENCER K J, HACKER B R, KYLANDER-CLARK A R C, et al. Campaign-style titanite U-Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure[J]. Chemical Geology, 2013, 341: 84-101.
STEARNS M A, HACKER B R, RATSCHBACHER L, et al. Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion[J]. Tectonics, 2015, 34(4): 784-802.
RODIONOV N V, LEPEKHINA E N, ANTONOV A V, et al. U-Pb SHRIMP-II ages of titanite and timing constraints on apatite-nepheline mineralization in the Khibiny and Lovozero alkaline massifs(Kola Peninsula)[J]. Russian Geology and Geophysics, 2018, 59(8): 962-974.
LI J W, DENG X D, ZHOU M F, et al. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China[J]. Chemical Geology, 2010, 270(1/2/3/4): 56-67.
刘颖. LA-ICP-MS榍石U-Pb定年方法优化及其地质应用[D]. 北京: 中国地质大学(北京), 2018.
向华, 张利, 钟增球, 等. 榍石:U-Pb定年及变质P-T-t轨迹的建立[J]. 地球科学进展, 2007, 22(12): 1258-1267.
XIANG H, ZHANG L, ZHONG Z Q, et al. Titanite: U-Pb dating and applications on defining P-T-t path of metamorphic rocks[J]. Advanced in Earth Science, 2007, 22(12): 1258-1267.
崔玉荣, 涂家润, 李国占, 等. LA-ICP-MS榍石U-Pb定年方法[J]. 华北地质, 2022, 45(4): 53-59.
CUN Y R, TU J R, LI G Z, et al. In situ U-Pb dating of titanite by Laser Ablation-Inducitvely Coupled Plasma-Mass Spectrometry[J]. North China Geology, 2022, 45(4): 53-59.
HU Z C, ZHANG W, LIU Y S, et al. ”Wave” Signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: Application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
VERMEESCH P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493.
STACEY J S, KRAMERS J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221.
PAUL A N, SPIKINGS R A, GAYNOR S P. U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites[J]. Chemical Geology, 2021, 586: 120604.
杨岳衡, 吴福元, 谢烈文, 等. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 2009, 25(12): 3431-3441.
YANG Y H, WU F Y, XIE L W, et al. In situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Acta Petrologica Sinica, 2009, 25(12): 3431-3441.
周琴. 陨石中副矿物原位U-Pb同位素定年[D]. 北京: 中国科学院大学, 2013.
SUN J F, YANG J H, WU F Y, et al. In situ U-Pb dating of titanite by LA-ICPMS[J]. Chinese Science Bulletin, 2012, 57(20): 2506-2516.
马倩. 榍石激光原位U-Pb和Sm-Nd同位素分析及其在三江地区新生代富碱岩石中的应用[D]. 北京: 中国地质大学(北京), 2020.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构