1.西北大学 城市与环境学院,陕西 西安 710127
2.西安金博瑞生态科技有限公司,陕西 西安 710065
[ "朱晓丽,女,博士,教授,博士生导师,第十四届全国人大代表,陕西省三八红旗手,陕西省科技创新创业人才。现任西北大学土壤污染控制与修复工程技术中心主任,陕西省生态文明促进会副会长,陕西省人大常委会资源与环境保护咨询专家,陕西省耕地及建设用地污染防治体系专家,陕西省秦岭保护专家委员会专家。从事重金属污染土壤治理与修复、煤矸石/粉煤灰等大宗固废处理及资源化利用等方面的研究与教学工作。主持国家自然科学基金、国家重点研发计划项目课题和专题、国家科技部惠民项目专题、陕西省重点产业创新链、陕西省“13115”重大科技创新专项、陕西省农业创新驱动项目、榆林市产学研计划项目、陕西省教育厅科技项目、西安市科技计划项目等多项科研项目;参与陕西省重点实验室、国家发改委高技术产业化示范工程等多项重大科研项目。曾在意大利萨兰托大学、美国堪萨斯州立大学作访问学者。在行业领域Top期刊Geoderma、Science of the Total Environment、《环境科学学报》等国内外刊物发表学术论文50余篇,授权国家发明专利14项。响应国家号召,进行专利成果的落地转化,创新创业,成立西安金博瑞生态科技有限公司,开发了系列土壤污染绿色修复和改良技术,并在陕北神木县、宝鸡凤县、汉中市勉县、渭南市潼关县等完成大面积应用示范,实现了耕地等的安全利用,提高了农作物产量和安全性,获得了良好的社会和环境效益,在环保、乡村振兴和创新创业等领域做出了突出贡献。2022年获得陕西省科技创新创业人才称号、陕西省“三八红旗手”称号。获得多项省部级成果奖,以第一完成人获得2021年陕西省农业技术推广成果二等奖1项,2020年获得陕西省科技工作者创新创业大赛一等奖1项,2019年获得中国创新创业大赛陕西赛区三等奖1项,陕西省环境保护科学技术一等奖1项,2018年获得陕西省科技工作者创新创业大赛三等奖1项,2011年参与获得陕西省科技进步一等奖1项。" ]
扫 描 看 全 文
朱晓丽, 赵锦绣, 程燕萍, 等. 核桃青皮在土壤重金属植物修复中的应用[J]. 西北大学学报(自然科学版), 2023,53(6):1004-1015.
ZHU Xiaoli, ZHAO Jinxiu, CHENG Yanping, et al. The application of walnut green husk in soil heavy metal phytoremediation[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):1004-1015.
朱晓丽, 赵锦绣, 程燕萍, 等. 核桃青皮在土壤重金属植物修复中的应用[J]. 西北大学学报(自然科学版), 2023,53(6):1004-1015. DOI: 10.16152/j.cnki.xdxbzr.2023-06-010.
ZHU Xiaoli, ZHAO Jinxiu, CHENG Yanping, et al. The application of walnut green husk in soil heavy metal phytoremediation[J]. Journal of Northwest University (Natural Science Edition), 2023,53(6):1004-1015. DOI: 10.16152/j.cnki.xdxbzr.2023-06-010.
该研究以核桃青皮发酵产物配施生物炭为固定化载体,结合前期筛选的硫酸盐还原菌(SRB15-3-2),制备得到了核桃青皮固定化菌剂,用于重金属污染土壤修复。基于pH、含水率、总养分、有机质、种子发芽指数和重金属含量等指标,评估了核桃青皮的发酵效果。通过配施生物炭并接种SRB15-3-2得到了改良后的固定化菌剂,考察了核桃青皮固定化菌剂对土壤重金属形态转化、植物生长及重金属富集能力的影响。结果表明,核桃青皮固定化菌剂促进了青菜生长并提高了生物量,与对照组(CK)相比,施加固定化菌剂的Cu和Cd污染土壤中青菜的株高分别增加了12.62%和5.42%,地上部分干重分别增加了95.05%和47.93%;固定化菌剂对土壤重金属表现出明显的钝化作用,促进了Cu和Cd从可交换态向残渣态转化,从而降低了重金属的迁移性及生物毒性,且青菜地下部分Cu和Cd的含量相比CK组降低了92.92%和72.83%,地上部分含量降低了34.00%和3.30%。研究结果为重金属污染土壤修复和核桃青皮的资源化利用提供了科学依据和理论支撑。
The study developed a walnut green husk immobilization bacterial agent using biochar and sulfate reducing bacteria, which was used to remediate heavy metal-contaminated soil.The fermentation effect of walnut green husk was evaluated based on pH, water content, total nutrients, organic matter, seed germination index and heavy metal content. An improved immobilized bacterial agent was obtained by dispensing biochar and inoculating with SRB15-3-2, and the effects of walnut green husk immobilized bacterial agent on the transformation of soil heavy metal fraction, plant growth and heavy metal enrichment capacity were investigated. The results showed that the immobilized bacterial agent of walnut green husk promoted the growth of green cabbage and increased the biomass.Compared with the control group (CK), the plant height of green cabbage in Cu and Cd contaminated soil with immobilized bacterial agent increased by 12.62% and 5.42%, respectively, and the dry weight of the aboveground part increased by 95.05% and 47.93%, respectively.In addition, the immobilized bacterial agent exhibited significant passivation of soil heavy metals and promoted the transformation of Cu and Cd from the exchangeable fraction to the residue fraction, thus reducing the mobility and biotoxicity of heavy metals.And the content of Cu and Cd in the underground part of the green cabbage was reduced by 92.92% and 72.82%, and the content of Cu and Cd in the aboveground part was reduced by 34.00% and 3.30% compared with that in the CK group.The results of this study provide scientific basis and theoretical support for the remediation of heavy metal contaminated soil and the resource utilization of walnut green husk.
核桃青皮固定化菌剂重金属土壤修复
walnut green huskimmobilized bacterial agentheavy metalsoil remediation
张有林, 原双进, 王小纪, 等. 基于中国核桃发展战略的核桃加工业的分析与思考[J]. 农业工程学报, 2015, 31(21): 1-8.
ZHANG Y L, YUAN S J, WANG X J, et al. Analysis and reflection on development strategy of walnut processing industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 1-8.
朱佳敏, 杨霞, 赵玉雪. 核桃青皮生物有机肥的制备及其在百香果上的应用初探[J]. 中国果树, 2023(4): 63-67.
ZHU J M, YANG X, ZHAO Y X. Preparation of bio-organic fertilizer from walnut peel and its application on passion fruit[J]. China Fruits, 2023(4): 63-67.
MERILA P, MALMIVAARA-LAMSA M, SPETZ P, et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest[J]. Applied Soil Ecology, 2010, 46(2): 259-267.
马红叶, 潘学军, 张文娥, 等. 不同条件下核桃青皮腐解物对土壤肥力的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(12): 88-98.
MA H Y, PAN X J, ZHANG W E, et al. Effects of walnut(Juglans sigillata)husk decomposition on soil fertility under various conditions[J]. Journal of Northwest A & F University(Natural Science Edition), 2016, 44(12): 88-98.
王婷. 核桃青皮化感活性及作用机理研究[D]. 杨凌: 西北农林科技大学, 2008.
赵国建, 王向东, 王焕. 提取方法对核桃青皮多酚提取效果的影响[J]. 农业工程学报, 2012, 28(增1): 351-355.
ZHAO G J, WANG X D, WANG H. Effects of different methods on polyphenols extraction from walnut green husk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S1): 351-355.
朱永官, 李刚, 张甘霖, 等. 土壤安全:从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
ZHU Y G, LI G, ZHANG G L, et al. Soil security: From earth’s critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70(12): 1859-1869.
王泽强, 张冬有, 徐夕博, 等. 基于遥感时-空-谱特征及随机森林模型的土壤重金属空间分布预测[J/OL]. 环境科学, 1-17[2023-08-23]. https://doi.org/10.13227/j.hjkx.202301103https://doi.org/10.13227/j.hjkx.202301103.
WANG Z Q, ZHANG D Y, XU X B, et al. Distribution prediction of soil heavy metals based on remote sensing temporal-spatial-spectra features and random forest mode environmental science[J/OL]. Environmental Science, 1-17[2023-08-23]. https://doi.org/10.13227/j.hjkx.202301103https://doi.org/10.13227/j.hjkx.202301103.
PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046.
PIERART A, SHAHID M, SEJALON-DELMAS N, et al. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures[J]. Journal of Hazardous Materials, 2015, 289: 219-234.
LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219.
中华人民共和国环境保护部. 全国土壤污染状况调查公报[R/OL]. (2014-04-17)[2023-05-17]. https://www.gov.cn/xinwen/2014-04/17/content_2661765https://www.gov.cn/xinwen/2014-04/17/content_2661765.
MANSOUR S A, SIDKY M M. Ecotoxicological Studies. 3. heavy metals contaminating water and fish from Fayoum Governorate, Egypt[J]. Food Chemistry, 2002, 78(1): 15-22.
RAFATI RAHIMZADEH M, RAFATI RAHIMZADEH M, KAZEMI S, et al. Cadmium toxicity and treatment: An update[J]. Caspian Journal of Internal Medicine, 2017, 8(3): 135-145.
尚相春, 金倩, 杨可明, 等. 基于污染种类判别特征的作物Pb、Cu污染种类判别[J]. 农业环境科学学报, 2023, 42(1): 46-54.
SHANG X C, JIN Q, YANG K M, et al. Discrimination of Pb and Cu pollution types in crops based on the discrimination feature of lead-copperpollution type[J]. Journal of Agro-Environment Science, 2023, 42(1): 46-54.
NEGAHDARI S, SABAGHAMN M, PIRHADI M, et al. Potential harmful effects of heavy metals as a toxic and carcinogenic agent in marine food: An overview[J]. Egyptian Journal of Veterinary Science, 2021, 52(3): 379-386.
LI P X, ZHONG L, GUO R. Potential mechanism and treatment of heavy metal cadmium-induced cardiovascular disease[J]. Scientia Sinica Vitae, 2021, 51(9): 1241-1253.
JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary toxicology, 2014, 7(2): 60-72.
JEZEQUEL K, LEBEAU T. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium[J]. Bioresource Technology, 2008, 99(4): 690-698.
杨亚红, 薛莉霞, 孙波, 等. 解淀粉芽孢杆菌生物有机肥防控土壤氨挥发[J]. 环境科学, 2020, 41(10): 4711-4718.
YANG Y H, XUE L X, SUN B, et al. Bacillus amyloliquefaciens biofertilizer mitigating soil ammonia volatilization[J]. Environmental Science, 2020, 41(10): 4711-4718.
张昌伟, 彭胜, 张琳杰, 等. 杜仲叶渣固态发酵制备有机肥的工艺研究[J]. 林产化学与工业, 2014, 34(6): 141-145.
ZHANG C W, PENG S, ZHANG L J, et al. Process of producing organic fertilizer by solid-state fermentation of leaves residual of eucommiaulmoidesoliv[J]. Chemistry and Industry of Forest Products, 2014, 34(6): 141-145.
GIOVANELLA P, CABRAL L, COSTA A P, et al. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals[J]. Ecotoxicology and Environmental Safety, 2017, 140: 162-169.
胡芳雨, 安婧, 王宝玉, 等. 农田土壤除草剂污染的修复技术研究进展[J]. 环境科学, 2023, 44(4): 2384-2394.
HU F Y, AN J, WANG B Y, et al. Research progress on the remediation technology of herbicide contamination in agricultural soils[J]. Environmental Science, 2023, 44(4): 2384-2394.
朱煜. 硫酸盐还原菌对重金属污染土壤的处理研究[J]. 环境污染与防治, 2021, 43(8): 952-955.
ZHU Y. Treatment of heavy metal contaminated soil using sulfate-reducing bacteria[J]. Environmental Pollution & Control, 2021, 43(8): 952-955.
朱晓丽, 张婵娟, 张星, 等. 生物炭固定化硫酸盐还原菌对镉污染土壤的钝化修复[J]. 环境科学学报, 2023, 43(5): 421-429.
ZHU X L, ZHANG C J, ZHANG X, et al. Remediation of Cd2+ contaminated soil by biochar immobilized sulfate reducing bacteria[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 421-429.
聂麦茜. 环境监测与分析实践教程 [M]. 北京: 化学工业出版社, 2003.
朱晓丽, 寇志健, 王军强, 等. 生物炭固定化硫酸盐还原菌对Cd2+吸附及作用机制分析[J]. 环境科学学报, 2021, 41(7): 2682-2690.
ZHU X L, KOU Z J, WANG J Q, et al. Adsorption of Cd2+ by sulfate reducing bacteria immobilized biochar[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2682-2690.
中华人民共和国农业农村部. 有机肥料:NY/T 525-2021[S/OL]. (2021-06-29)[2023-05-17]. http://www.jgj.moa.gov.cn/nybz/202106/t20210629_6370533http://www.jgj.moa.gov.cn/nybz/202106/t20210629_6370533.
朱晓丽, 程燕萍, 申烨华, 等. 核桃青皮生物炭对重金属的吸附效应分析[J]. 环境科学, 2023, 44(10): 5599-5609.
ZHU X L, CHENG Y P, SHEN Y H, et al. Adsorption performance of walnut green husk biochar for heavy metals[J]. Environmental Science, 2023, 44(10): 5599-5609.
YANG Y J, CHEN R J, FU G F, et al. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa)[J]. Acta Physiologiae Plantarum, 2016, 38(1): 28.
陈胜男, 谷洁, 高华, 等. 微生物菌剂对小麦秸秆和尿素静态堆腐过程的影响[J]. 农业工程学报, 2009, 25(3): 198-201.
CHEN S N, GU J, GAO H, et al. Effects of microbial inoculants on wheat straw and urea during composting at static state[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(3): 198-201.
高剑平, 黄建峰, 张梁. 污泥与菌渣混合好氧快速堆肥协同发酵研究[J]. 中国给水排水, 2016, 32(9): 127-130.
GAO J P, HUANG J F, ZHANG L. Cooperative fermentation for aerobic co-composting of edible fungi residue and sewage sludge[J]. China Water & Wastewater, 2016, 32(9): 127-130.
徐鹏翔, 王越, 杨军香, 等. 好氧堆肥中通风工艺与参数研究进展[J]. 农业环境科学学报, 2018, 37(11): 2403-2408.
XU P X, WANG Y, YANG J X, et al. Advances in ventilation systems and parameter choices during aerobic composting[J]. Journal of Agro-Environment Science, 2018, 37(11): 2403-2408.
栾润宇, 徐应明, 高珊, 等. 不同发酵方式对鸡粪重金属及有机质影响[J]. 中国环境科学, 2020, 40(8): 3486-3494.
LUAN R Y, XU Y M, GAO S, et al. Heavy metal and organic matters in the chicken manure under different types of composting[J]. China Environmental Science, 2020, 40(8): 3486-3494.
席北斗, 赵越, 魏自民, 等. 三阶段温度控制堆肥接种法对有机氮变化规律的影响[J]. 环境科学, 2007, 28(1): 220-224.
XI B D, ZHAO Y, WEI Z M, et al. Variations of organic nitrogen forms during composting process using three stages controlled by temperature[J]. Environmental Science, 2007, 28(1): 220-224.
WU D, WEI Z M, QU F T, et al. Effect of fenton pretreatment combined with bacteria inoculation on humic substances formation during lignocellulosic biomass composting derived from rice straw[J]. Bioresource Technology, 2020, 303: 122849.
韩聪颖, 王星怡, 马永杰, 等. 气化滤饼对枸杞枝条堆肥进程、品质和碳氮损失的影响[J]. 西北农业学报, 2023, 32(9): 1445-1455.
HAN C Y, WANG X Y, MA Y J, et al. Effect of gasification filter cake on composting process, quality, and carbon and nitrogen loss of lyciumbarbarum branches[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(9): 1445-1455.
SAIDI N, KOUKI S, HIRI F, et al. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition[J]. Journal of Environmental Sciences, 2009, 21(10): 1452-1458.
钱晓雍, 沈根祥, 黄丽华, 等. 畜禽粪便堆肥腐熟度评价指标体系研究[J]. 农业环境科学学报, 2009, 28(3): 549-554.
QIAN X Y, SHEN G Y, HUANG L H, et al. An index system for evaluating the maturity of animal manure composting[J]. Journal of Agro-Environment Science, 2009, 28(3): 549-554.
蔡涵冰, 冯雯雯, 董永华, 等. 畜禽粪便和桃树枝工业化堆肥过程中微生物群演替及其与环境因子的关系[J]. 环境科学, 2020, 41(2): 997-1004.
CAI H B, FENG W W, DONG Y H, et al. Microbial community succession in industrial composting with livestock manure and peach branches and relations with environmental factors[J]. Environmental Science, 2020, 41(2): 997-1004.
SINGH P, RAWAT S, JAIN N, et al. A review on biochar composites for soil remediation applications: Comprehensive solution to contemporary challenges[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110635.
QIAN Z Z, TANG L Z, ZHUANG S Y, et al. Effects of biochar amendments on soil water retention characteristics of red soil at south China[J]. Biochar, 2020, 2(4): 479-488.
程海宽, 张彪, 景鑫鑫, 等. 玉米对铅胁迫的响应及体内铅化学形态研究[J]. 环境科学, 2015, 36(4): 1468-1473.
CHENG H K, ZHANG B, JING X X, et al. Response of maize to lead stress and relevant chemical forms of lead[J]. Environmental Science, 2015, 36(4): 1468-1473.
步磊, 史巍. 不同类型有机肥配施氮肥对优质小麦产量与品质的影响探究[J]. 智慧农业导刊, 2022, 2(14): 25-27.
BU L, SHI W. Effects of different types of organic fertilizer combined with nitrogen fertilizer on yield and quality of high-quality wheat[J]. Journal of Smart Agriculture, 2022, 2(14): 25-27.
王星琳. 化肥有机替代对小麦根际区系的影响[D]. 太原: 山西大学, 2021.
杨利, 颜安, 宁松瑞, 等. 生物有机肥对盐胁迫小麦幼苗生长和土壤培肥的影响 [J]. 新疆农业大学学报, 2021, 44(4): 291-299.
YANG L, YAN A, NING S R, et al. Effects of bio-organic fertilizer on wheat seedling growth and soil fertility improvement under salt stress[J]. Journal of Xinjiang Agricultural University, 2021, 44(4): 291-299.
LIN L, ZHOU W H, DAI H X, et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice [J]. Journal of Hazardous Materials, 2012, 235/236(2): 343-351.
WU Z C, WANG F H, LIU S, et al. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental & Experimental Botany, 2016, 131: 173-180.
LI X, LAN S M, ZHU Z P, et al. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review[J]. Ecotoxicology and Environmental Safety, 2018, 158: 162-170.
王晓宇, 韩辉. 重金属固定细菌调控土壤铁氧化物阻控小麦Cd吸收效应[J]. 环境科学, 2020, 41(11): 5160-5167.
WANG X Y, HAN H. Effects of heavy metal-immobilizing bacteria on reducing wheat uptake Cd by regulation soil iron oxides[J]. Environmental Science, 2020, 41(11): 5160-5167.
ZHANG C, SHAN B Q, ZHU Y Y, et al. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments[J]. Environmental Pollution, 2018, 242: 1768-1776.
许妍哲, 方战强. 生物炭修复土壤重金属的研究进展[J]. 环境工程, 2015, 33(2): 156-159.
XU Y Z, FANG Z Q. Advances on remediation of heavy metal in the soil by biochar[J]. Environmental Engineering, 2015, 33(2): 156-159.
李治梅. 不同功能化蒙脱土对镉污染土壤的钝化修复及稳定性研究[D]. 贵阳: 贵州师范大学, 2023.
杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应[J]. 环境科学, 2016, 37(9): 3562-3574.
YANG L, LI B, WANG C Q, et al. Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination[J]. Environmental Science, 2016, 37(9): 3562-3574.
韩烁, 夏冬亮, 李潞滨, 等. 毛竹根部解磷细菌的筛选及多样性研究[J]. 河北农业大学学报, 2010, 33(2): 26-31.
HAN S, XIA D L, LI L B, et al. Diversity of the phosphate solubilizing bacteria isolated from the root of Phyllostachys pubescens[J]. Journal of Hebei Agricultural University, 2010, 33(2): 26-31.
马莹, 王玥, 石孝均, 等. 植物促生菌在重金属生物修复中的作用机制及应用[J]. 环境科学, 2022, 43(9): 4911-4922.
MA Y, WANG Y, SHI X J, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022, 43(9): 4911-4922.
刘文英, 吴刚, 胡红青. EDDS对土壤铜镉有效性及蓖麻吸收转运的影响[J/OL]. 环境科学, 1-13[2023-08-23]. https://doi.org/10.13227/j.hjkx.202304007https://doi.org/10.13227/j.hjkx.202304007.
LIU W Y, WU G, HU H Q. Effect of EDDS application on soil Cu/Cd availability and uptake/transport by castor[J/OL]. Environmental Science, 1-13[2023-08-23]. https://doi.org/10.13227/j.hjkx.202304007https://doi.org/10.13227/j.hjkx.202304007.
冉文静, 傅大放. 黑麦草修复模拟重金属污染土壤的化学强化及其潜在风险[J]. 东南大学学报(自然科学版), 2011, 41(4): 793-798.
RAN W J, FU D F. Effects and risk of chemical enhancement measures to phytoremediation using lolium L. for artificially polluted soil with heavy metals[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(4): 793-798.
陈洁宜, 刘广波, 崔金立, 等. 广东大宝山矿区土壤植物体系重金属迁移过程及风险评价[J]. 环境科学, 2019, 40(12): 5629-5639.
CHEN J Y, LIU G B, CUI J L, et al. Mobilization of heavy metals in a soil-plant system and risk assessment in the Dabaoshan mine area, Guangdong Province, China[J]. Environmental Science, 2019, 40(12): 5629-5639.
卞建林, 郭俊娒, 王学东, 等. 两种不同镉富集能力油菜品种耐性机制[J]. 环境科学, 2020, 41(2): 970-978.
BIAN J L, GUO J M, WANG X D, et al. Tolerance mechanism and cadmium enrichment abilities in two brassica napus. cultivars[J]. Environmental Science, 2020, 41(2): 970-978.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构