浏览全部资源
扫码关注微信
1.西北大学地质学系/大陆演化与早期生命全国重点实验室/NWU-HKU地球与行星科学中心,陕西 西安 710069
2.香港大学地球科学系,香港 999077
[ "姚金龙,西北大学教授,博士生导师,国家优秀青年科学基金获得者。2010年毕业于南京大学地球科学系地质学专业,获理学学士学位;2010—2016年南京大学构造地质学专业博士研究生,2015年赴英国圣安德鲁斯大学联合培养,2016年6月获理学博士学位。2016年获得香江学者计划资助,2017年1月—2019年1月在香港大学开展博士后研究工作,2019年1月—4月任香港大学研究助理。2019年4月至今,任教于西北大学。" ]
收稿日期:2025-03-15,
纸质出版日期:2025-06-25
移动端阅览
姚金龙, 崔鹏远, 韩以贵, 等. 从冈瓦纳聚合阶段早期生命辐射的构造环境因子到地球系统科学[J]. 西北大学学报(自然科学版), 2025,55(3):475-488.
YAO Jinlong, CUI Pengyuan, HAN Yigui, et al. From tectonic-environmental factors of Early life diversification during Gondwana assembly to Earth Science System[J]. Journal of northwest university (natural science edition), 2025, 55(3): 475-488.
姚金龙, 崔鹏远, 韩以贵, 等. 从冈瓦纳聚合阶段早期生命辐射的构造环境因子到地球系统科学[J]. 西北大学学报(自然科学版), 2025,55(3):475-488. DOI: 10.16152/j.cnki.xdxbzr.2025-03-001.
YAO Jinlong, CUI Pengyuan, HAN Yigui, et al. From tectonic-environmental factors of Early life diversification during Gondwana assembly to Earth Science System[J]. Journal of northwest university (natural science edition), 2025, 55(3): 475-488. DOI: 10.16152/j.cnki.xdxbzr.2025-03-001.
在地球生物演化历史上,寒武纪生命大爆发最为引人注目。这一时期前后,即新元古代中晚期至寒武纪时期,又发了冈瓦纳大陆聚合(~680~430 Ma)、大气增氧(NOE)、三期雪球地球与冰期事件、地球磁场特殊演化、内核形成等全球性重大事件。而且,现代板块构造可能在这一时期建立。可见地球表生圈层与固体圈层之间存在紧密的相互作用。但是,这一时期推动表生圈层巨变的构造因子及其作用机制
争议巨大,目前大多局限于概念模型。地球多圈层定量化数据规律显示,这一时期可能以罗迪尼亚(Rodinia)超大陆裂解诱发雪球地球和启动增氧为开端。其后,冈瓦纳大陆聚合期间,现代板块构造体制下持续超过2亿年的造山作用形成了总规模超过9 000 km的巨型造山带,为地球表生圈层巨变、质变提供了持续驱动力。这一时期的大规模造山带、高压超高压变质和温压比(
T/P
)急剧下降,表明造山规模均接近现代地球;其根本原因在于大规模大陆深俯冲。另一方面,地幔降温,洋壳减薄,地球上的海陆二分性在这一时期更为显著,地形起伏可能在这一时期达到前所未有的水平,能够为动物活动提供生态空间位置。在海陆二分性的加持下,这些低纬度山脉引发了超强的风化剥蚀作用,为海洋提供了巨量陆缘沉积物,海水Sr同位素在这一时期达到了地球历史最高值。此外,雪球地球也对大陆风化有所贡献。巨量陆缘沉积物和营养元素深刻改变了海洋成分并提升了生产力,持续驱动了增氧事件。另外,新元古代晚期至寒武纪,地球磁场强度极弱,超强宇宙辐射有利于基因突变和生物多样性形成,这可能与地球内核的形成有关;此外还可能发生了真极移和高频倒转。多方面偶然和必然条件的共同作用,为早期生命辐射提供了基因和环境诱因以及生态位置(即外因),最终形成了多圈层相互作用的地球系统。
The Cambrian animal diversification is a milestone in life evolution history. This also coincides well the Neoproterozoic atmospheric oxygenation (NOE)
Gondwana assembly (~680~430 Ma) and Snowball Earth event
as well as magnetic field extreme evolution and formation of Earth inner core. Moreover
modern plate tectonics may have also been established during this period. Thus
solid Earth and surficial system evolution must be closely linked. However
the tectonic factors that drove the evolution of surficial systems during Gondwana assembly are less constrained
as is the driving mechanism. Most earlier studies are limited to conceptual models. Here
a review of data patterns shows that this period initiated with the breakup of the Rodinia supercontinent
whic'h induced the Snowball Earth and oxygenation events. The subsequent Gondwana assembly
within the modern plate tectonic regime
generated super-orogens that lasted for more than 200 million years. The elevations of these over 9 000 km long super orogens might have been comparable to those of modern Earth
which should have served as a continuous driving force for the Earth's surficial environs. The large-scale Himalaya type collision orogenic belt during this period is consistent with the sudden drops of the global thermobaric ratio (
T/P
) and the large-scale occurrence of high-pressure and ultrahigh-pressure met
amorphism. On the other hand
due to secular mantle cooling and thinning of the oceanic crust
the duality of ocean and continental crust became more significant at this time. This indicates that the topographic relief might have reached an unprecedented level during this period
which can provide ecological space for ocean animal system. This
together with low-latitude orogenic belts caused extensive weathering and supplied a huge amount of continental sediments to the ocean
consist with the seawater Sr isotope that reached the highest value in the history. Meanwhile
snowball Earth also contributed to continental weathering. Huge sediments and nutrients supply profoundly changed ocean composition and increased ocean productivity
triggering oxygenation events. In addition
in the late Neoproterozoic to the Cambrian time
the Earth had an extremely weak magnetic field
possibly related to the formation of the Earth's inner core. Ediacaran true polar wander path and high frequency magnetic field reversing also occurred. This indicates high cosmic radiation that might have contributed to genetic mutation. Therefore
multiple accidental and inevitable factors provided genetic
environmental and ecological conditions for Ediacaran life radiation and Cambrian life explosion. In addition
the increased supply of sediments reduced the friction coefficient within subduction zone and increases the plate subduction rate
which can explain the rapid continental plate drift during Gondwana cycle Overall
the Gondwana cycle is a critical period in the evolution of the Earth system.
CAWOOD P A , CHOWDHURY P , MULDER J A , et al . Secular evolution of Continents and the Earth system [J ] . Reviews of Geophysics , 2022 , 60 : 10.1029/2022RG000789 https://doi.org/10.1029/2022RG000789 .
YAO J L , CAWOOD P A , ZHAO G C , et al . Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly [J ] . Nature Communications , 2021 , 12 ( 1 ): 4189 .
朱日祥 , 侯增谦 , 郭正堂 , 等 . 宜居地球的过去、现在与未来——地球科学发展战略概要 [J ] . 科学通报 , 2021 , 66 ( 35 ): 4485 - 4490 .
ZHU R X , HOU Z Q , GUO Z T , et al . Summary of "the past, present and future of the habitable Earth: Development strategy of Earth science" [J ] . Science Bulletin , 2021 , 66 ( 35 ): 4485 - 4490 .
SHU D G , HAN J . Core value of the Chengjiang fauna: Formation of the animal kingdom and the birth of basic human organs [J ] . Geoscience Frontiers , 2020 , 27 ( 6 ): 382 - 412 .
SCHMITT R D S , FRAGOSO R D A , COLLINS A S . Suturing Gondwana in the Cambrian: The Orogenic events of the final amalgamation [C ] // SIEGESMUND S , BASEI M , OYHANTÇABAL P , et al . Geology of Southwest Gondwana . Cham : Springer International Publishing , 2018 : 411 - 432 . 10.1007/978-3-319-68920-3-15 https://doi.org/10.1007/978-3-319-68920-3-15 .
CAWOOD P A . Earth Matters: A tempo to our planet's evolution [J ] . Geology , 2020 , 48 ( 5 ): 525 - 526 .
MERDITH A S , WILLIAMS S E , COLLINS A S , et al . Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic [J ] . Earth-Science Reviews , 2021 , 214 : 103477 .
姚金龙 , 赵国春 , 韩以贵 , 等 . 晚新元古代——早寒武世现代板块构造与现代地球系统的建立 [J ] . 西北大学学报(自然科学版) , 2021 , 51 ( 6 ): 1007 - 1018 .
YAO J L , ZHAO G C , HAN Y G , et al . Establishment of modern plate tectonic regime and modern Earth system in the late Neoproterozoic-early Cambrian [J ] . Journal of Northwest University (Natural Science Edition) , 2021 , 51 ( 6 ): 1007 - 1018 .
STERN R J . The mesoproterozoic single-lid tectonic episode: Prelude to modern plate tectonics [J ] . Gsa Today , 2020 , 30 ( 12 ): 4 - 10 .
HOFFMAN P F , ABBOT D S , ASHKENAZY Y , et al . Snowball Earth climate dynamics and Cryogenian geology-geobiology [J ] . Science Advances , 2017 , 3 ( 11 ): e1600983 .
HUANG K J , TENG F Z , SHEN B , et al . Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation [J ] . Proceedings of the National Academy of Sciences , 2016 , 113 ( 52 ): 14904 - 14909 .
LYONS T W , REINHARD C T , PLANAVSKY N J . The rise of oxygen in Earth's early ocean and atmosphere [J ] . Nature , 2014 , 506 ( 7488 ): 307 - 315 .
OCH L M , SHIELDS-ZHOU G A . The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling [J ] . Earth-Science Reviews , 2012 , 110 ( 1 ): 26 - 57 .
WEN B , EVANS D A D , ANDERSON R P , et al . Late ediacaran paleogeography of avalonia and the Cambrian assembly of West Gondwana [J ] . Earth and Planetary Science Letters , 2020 , 552 : 116591 .
DOMEIER M , ROBERT B , MEERT J G , et al . The enduring Ediacaran paleomagnetic enigma [J ] . Earth-Science Reviews , 2023 , 242 : 104444 .
LEVASHOVA N M , GOLOVANOVA I V , RUDKO D V , et al . Late Ediacaran magnetic field hyperactivity: Quantifying the reversal frequency in the Zigan Formation, Southern Urals, Russia [J ] . Gondwana Research , 2021 , 94 : 133 - 142 .
ZHOU T H , TARDUNO J A , NIMMO F , et al . Early Cambrian renewal of the geodynamo and the origin of inner core structure [J ] . Nature Communications , 2022 , 13 ( 1 ): 4161 .
MEERT J G , LEVASHOVA N M , BAZHENOV M L , et al . Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation [J ] . Gondwana Research , 2016 , 34 : 149 - 157 .
BONO R K , TARDUNO J A , NIMMO F , et al . Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity [J ] . Nature Geoscience , 2019 , 12 ( 2 ): 143 - 147 .
LI Y X , TARDUNO J A , JIAO W J , et al . Late Cambrian geomagnetic instability after the onset of inner core nucleation [J ] . Nature Communications , 2023 , 14 ( 1 ): 4596 .
KNOLL A H , NOWAK M A . The timetable of evolution [J ] . Science Advances , 2017 , 3 ( 5 ): e1603076 .
WOOD R , LIU A G , BOWYER F , et al . Integrated records of environmental change and evolution challenge the Cambrian Explosion [J ] . Nature Ecology & Evolution , 2019 , 3 ( 4 ): 528 - 538 .
ZHANG X L , SHU D G . Causes and consequences of the Cambrian Explosion [J ] . Science China Earth Sciences , 2014 , 57 ( 5 ): 930 - 942 .
张志飞 , 刘璠 , 梁悦 , 等 . 寒武纪生命大爆发与地球生态系统起源演化 [J ] . 西北大学学报(自然科学版) , 2021 , 51 ( 6 ): 1065 - 1106 .
ZHANG Z F , LIU F , LIANG Y , et al . The Cambrian Explosion of animals and the evolution of ecosystems on Earth [J ] . Journal of Northwest University (Natural Science Edition) , 2021 , 51 ( 6 ): 1065 - 1106 .
CAMPBELL I H , SQUIRE R J . The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event [J ] . Geochimica et Cosmochimica Acta , 2010 , 74 ( 15 ): 4187 - 4206 .
TANG M , CHU X , HAO J H , et al . Orogenic quiescence in Earth's middle age [J ] . Science , 2021 , 371 ( 6530 ): 728 - 731 .
MILLS B J W , SCOTESE C R , WALDING N G , et al . Elevated CO 2 degassing rates prevented the return of Snowball Earth during the Phanerozoic [J ] . Nature Communications , 2017 , 8 ( 1 ): 1110 .
CAMPBELL I H , ALLEN C M . Formation of supercontinents linked to increases in atmospheric oxygen [J ] . Nature Geoscience , 2008 , 1 ( 8 ): 554 - 558 .
CAWOOD P A , STRACHAN R A , PISAREVSKY S A , et al . Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles [J ] . Earth and Planetary Science Letters , 2016 , 449 : 118 - 126 .
LI Z X , EVANS D A D , HALVERSON G P . Neoproterozoic glaciations in a revised global Palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland [J ] . Sedimentary Geology , 2013 , 294 : 219 - 232 .
COX G M , HALVERSON G P , STEVENSON R K , et al . Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth [J ] . Earth and Planetary Science Letters , 2016 , 446 : 89 - 99 .
GERNON T M , HINCKS T K , TYRRELL T , et al . Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup [J ] . Nature Geoscience , 2016 , 9 ( 3 ): 242 - 248 .
HORTON F . Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? [J ] . Geochemistry , 2015 , 16 : 1723 - 1738 .
SANTOSH M , MARUYAMA S , SAWAKI Y , et al . The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth [J ] . Gondwana Research , 2014 , 25 ( 3 ): 945 - 965 .
KENNEDY M J , CHRISTIE-BLICK N , PRAVE A R . Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena [J ] . Geology , 2001 , 29 ( 12 ): 1135 - 1138 .
ERNST R E , BOND D P G , ZHANG S H , et al . Large igneous province record through time and implications for secular environmental changes and geological time-scale boundaries [C ] // Large Igneous Provinces , 2021 : 1 - 26 .
SHIELDS G A , MILLS B J W , ZHU M Y , et al . Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial [J ] . Nature Geoscience , 2019 , 12 ( 10 ): 823 - 827 .
WILLIAMS J J , MILLS B J W , LENTON T M . A tectonically driven Ediacaran oxygenation event [J ] . Nature Communications , 2019 , 10 ( 1 ): 2690 .
HAWKESWORTH C J , CAWOOD P A , DHUIME B . Tectonics and crustal evolution [J ] . Gsa Today , 2016 , 26 ( 9 ): 4 - 11 .
PALIN R M , SANTOSH M , CAO W T , et al . Secular change and the onset of plate tectonics on Earth [J ] . Earth-Science Reviews , 2020 , 207 : 103172 .
ZHENG Y F , ZHAO G C . Two styles of plate tectonics in Earth's history [J ] . Science Bulletin , 2020 , 65 ( 4 ): 329 - 334 .
HERZBERG C , CONDIE K , KORENAGA J . Thermal history of the Earth and its petrological expression [J ] . Earth and Planetary Science Letters , 2010 , 292 ( 1/2 ): 79 - 88 .
SIZOVA E , GERYA T , BROWN M . Contrasting styles of phanerozoic and precambrian continental collision [J ] . Gondwana Research , 2014 , 25 ( 2 ): 522 - 545 .
HOLDER R M , VIETE D R , BROWN M , et al . Metamorphism and the evolution of plate tectonics [J ] . Nature , 2019 , 572 ( 7769 ): 378 - 381 .
BROWN M , KIRKLAND C L , JOHNSON T E . Evolution of geodynamics since the Archean: Significant change at the dawn of the Phanerozoic [J ] . Geology , 2020 , 48 ( 5 ): 488 - 492 .
刘良 , 陈丹玲 , 章军锋 , 等 . 陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据 [J ] . 地球科学 , 2019 , 44 ( 12 ): 3998 - 4003 .
LIU L , CHEN D L , ZHANG J F , et al . New evidence of an ultra-deep continental subduction to mantle depth (~300 km) in stishovite stability field [J ] . Earth Science , 2019 , 44 ( 12 ): 3998 - 4003 .
EDGAR A , SANISLAV I V , DIRKS P H G M , et al . Metamorphic diamond from the northeastern margin of Gondwana: Paradigm shifting implications for one of Earth's largest orogens [J ] . Science Advances , 2022 , 8 ( 27 ): eabo2811 .
YANG J S , DOBRZHINETSKAYA L , BAI W J , et al . Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet [J ] . Geology , 2007 , 35 ( 10 ): 875 - 878 .
SPENCER C J , ROBERTS N M W , SANTOSH M . Growth, destruction, and preservation of Earth's continental crust [J ] . Earth-Science Reviews , 2017 , 172 : 87 - 106 .
BADGLEY C . Tectonics, topography, and mammalian diversity [J ] . Ecography , 2010 , 33 ( 2 ): 220 - 231 .
TANG M , CHEN H , LEE C A , et al . Subaerial crust emergence hindered by phase-driven lower crust densification on early Earth [J ] . Science Advances , 2024 , 10 ( 37 ): eadq1952 .
AIRY G B . On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys [J ] . Philosophical Transactions of the Royal Society of London , 1855 , 145 : 101 - 104 .
PRATT J H . On the attraction of the himalaya mountains, and of the elevated regions beyond them, upon the plumbline in India [J ] . Philosophical Transactions of the Royal Society of London , 1855 , 145 : 53 - 100 .
BOWIE W . Notes on the airy or "Roots of Mountains" Theory [J ] . Science , 1926 , 63 ( 1632 ): 371 - 374 .
GRATTON J . Crustal shortening, root spreading, isostasy, and the growth of orogenic belts: A dimensional analysis [J ] . Journal of Geophysical Research , 1989 , 94 : 15627 - 15634 .
GRAY D R , FOSTER D A , MEERT J G , et al . A Damara orogen perspective on the assembly of Southwestern Gondwana [J ] . Geological Society, London, Special Publications , 2008 , 294 : 257 - 278 .
MEERT J G , VAN DER VOO R . The assembly of Gondwana 800~550 Ma [J ] . Journal of Geodynamics , 1997 , 23 ( 3 ): 223 - 235 .
ZHAO G C , WANG Y J , HUANG B C , et al . Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J ] . Earth-Science Reviews , 2018 , 186 : 262 - 286 .
MEERT J G , LIEBERMAN B S . The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation [J ] . Gondwana Research , 2008 , 14 ( 1 ): 5 - 21 .
HÖNING D , SPOHN T . Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth [J ] . Physics of the Earth and Planetary Interiors , 2016 , 255 : 27 - 49 .
JUN K . Crustal evolution and mantle dynamics through Earth history [J ] . Philos Trans A Math Phys Eng Sci , 2018 , 376 ( 2132 ). DOI: 10.1098/rsta.2017.0408 https://doi.org/10.1098/rsta.2017.0408 .
VAN THIENEN P , VAN DEN BERG A P , VLAAR N J . Production and recycling of oceanic crust in the early Earth [J ] . Tectonophysics , 2004 , 386 ( 1/2 ): 41 - 65 .
SHIELDS-ZHOU G A , OCH L M . The case for a neoproterozoic oxygenation event: Geochemical evidence and biological consequences [J ] . GSA Today , 2011 , 21 ( 3 ): 4 - 11 .
SHIELDS G A . A normalised seawater strontium isotope curve: Possible implications for neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth [J ] . Eearth , 2007 , 2 ( 2 ): 35 - 42 .
SALLES T , HUSSON L , LORCERY M , et al . Landscape dynamics and the Phanerozoic diversification of the biosphere [J ] . Nature , 2023 , 624 ( 7990 ): 115 - 121 .
LYONS T W , DIAMOND C W , PLANAVSKY N J , et al . Oxygenation, life, and the planetary system during Earth's middle history: An overview [J ] . Astrobiology , 2021 , 21 : 906 - 923 .
ZERKLE A L . Biogeodynamics: Bridging the gap between surface and deep Earth processes [J ] . Philos Trans A Math Phys Eng Sci , 2018 , 376 ( 2132 ): 20170401 .
叶云涛 , 王华建 , 翟俪娜 , 等 . 新元古代重大地质事件及其与生物演化的耦合关系 [J ] . 沉积学报 , 2017 , 35 ( 2 ): 203 - 216 .
YE Y T , WANG H J , ZHAI L N , et al . Geological events and their biological responses during the Neoproterozoic Era [J ] . Acta Sedimentologica Sinica , 2017 , 35 ( 2 ): 203 - 216 .
SQUIRE R J , CAMPBELL I H , ALLEN C M , et al . Did the transgondwanan supermountain trigger the explosive radiation of animals on Earth? [J ] . Earth and Planetary Science Letters , 2006 , 250 ( 1/2 ): 116 - 133 .
SHU D G , ISOZAKI Y , ZHANG X L , et al . Birth and early evolution of metazoans [J ] . Gondwana Research , 2014 , 25 ( 3 ): 884 - 895 .
张志飞 , 梁悦 , 刘璠 , 等 . 寒武纪生命大爆发新解与地球海洋动物生态系统建立 [J ] . 古生物学报 , 2023 , 62 ( 4 ): 463 - 515 .
ZHANG Z F , LIANG Y , LIU F , et al . New perspectives on Cambrian Explosion: Construction of the first animal consumer-driven marine ecosystem on Earth [J ] . Acta Palaeontologica Sinica , 2023 , 62 ( 4 ): 463 - 515 .
ZHAO M Y , MILLS B J W , POULTON S W , et al . Drivers of the global phosphorus cycle over geological time [J ] . Nature Reviews Earth & Environment , 2024 , 5 ( 12 ): 873 - 889 .
DODD M S , SHI W , LI C , et al . Uncovering the Ediacaran phosphorus cycle [J ] . Nature , 2023 , 618 ( 7967 ): 974 - 980 .
MILLS B J W , KRAUSE A J , SCOTESE C R , et al . Modelling the long-term carbon cycle, atmospheric CO 2 , and Earth surface temperature from late Neoproterozoic to present day [J ] . Gondwana Research , 2019 , 67 : 172 - 186 .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构