浏览全部资源
扫码关注微信
1.西北大学 地质学系/大陆演化与早期生命全国重点实验室/陕西省早期生命与环境重点实验室,陕西 西安 710069
2.江汉师范学院 化学与环境工程学院,湖北 十堰 442000
赵琪,女,从事奥陶纪—泥盆纪镜眼虫目三叶虫形态演化研究,1059924812@qq.com。
陈延龙,男,副教授,博士生导师,从事早古生代和三叠纪磷灰石质化石及生物与古环境协同演化的研究,yanlong.chen@nwu.edu.cn。
收稿日期:2024-12-25,
纸质出版日期:2025-04-25
移动端阅览
赵琪, 陈延龙, 代韬, 等. 奥陶纪—泥盆纪镜眼虫目三叶虫头部形态演化及其对环境变化的响应[J]. 西北大学学报(自然科学版), 2025,55(2):235-245.
ZHAO Qi, CHEN Yanlong, DAI Tao, et al. Morphologic evolution in the cephalon of the Ordovician-Devonian Phacopida trilobites and its responds to environmental changes[J]. Journal of northwest university (natural science edition), 2025, 55(2): 235-245.
赵琪, 陈延龙, 代韬, 等. 奥陶纪—泥盆纪镜眼虫目三叶虫头部形态演化及其对环境变化的响应[J]. 西北大学学报(自然科学版), 2025,55(2):235-245. DOI: 10.16152/j.cnki.xdxbzr.2025-02-002.
ZHAO Qi, CHEN Yanlong, DAI Tao, et al. Morphologic evolution in the cephalon of the Ordovician-Devonian Phacopida trilobites and its responds to environmental changes[J]. Journal of northwest university (natural science edition), 2025, 55(2): 235-245. DOI: 10.16152/j.cnki.xdxbzr.2025-02-002.
镜眼虫目三叶虫是奥陶纪—泥盆纪的代表性三叶虫类群,其在显生宙早期的海洋生态系统中占据重要位置,历经古生代多次重大地质历史事件。目前,对于其分类单元多样性的研究较为充分,但其形态多样性演化及与地质事件的协同关系尚不明确。该研究聚焦于奥陶纪—纪泥盆纪镜眼虫目三叶虫的形态演化及其对地质事件的响应,通过几何形态测量学对351个属的头部形态进行了分析,并基于形态空间量化了奥陶纪至泥盆纪镜眼虫目的头部形态变化。研究发现,镜眼虫目三叶虫头部的形态分异度高峰出现在中奥陶世达瑞威尔期和中泥盆世艾菲尔期;主要的衰退出现了3次,分别是晚奥陶世凯迪期、志留纪末期和晚泥盆世法门期,均与各类缺氧海退等重大环境变化事件耦合,说明镜眼虫目的头部形态演化与海平面和水体氧含量变化密切相关,这些环境因素很大程度上影响了其形态分异度的变化。除此之外,中泥盆世艾菲尔期,镜眼虫目新增属种数量下降,但同时期头部形态分异度(SOV和SOR)却上升,即形态多样性峰值出现在物种多样性峰值之后,这是由于与镜眼虫目具有相同生态位的其他生物类群在此时期大发展,抑制了镜眼虫目分类单元多样性的增加,却加剧了同生态位物种间的竞争,促使镜眼虫目新生属种发生头部形态的创新。
The Phacopida are a representative order of trilobites from the Ordovician to the Devonian periods
occupying an important position in the marine ecosystem during the early Phanerozoic spannedmany significant geological events in the Paleozoic. The taxonomic diversity of Phacopida has been well investigated
but the co-evolution of its morphological disparity with geological events still needs to be clarified. This study focuses on the morphological evolution of Phacopida trilobites and its response to geological events ranging from the Ordovician to Devonian. Utilizing a geometric morphometric approach
we analyzed the shape of cephalon of 351 distinct genera and quantified the morphological changes of Phacopida from the Ordovician to Devonian based on morphospaces. We found that the peak of morphological disparity in the cephalon of Phacopida occurred in the Darriwilian and the Eifelian
and there were three major recessions
respectively: the Katian
the latest Silurian
and the Famennian
all of them appeared in periods of major environmental disturbances such as anoxic events and regressions
suggesting that the morphological evolution in the cephalon of Phacopida was closely related to oxygen content in sea water and the changes of sea level
and these environmental factors greatly affected the variation of their morphological disparity. Meanwhile
the number of new genus of Phacopida decreased during the Eifelian
but morphological disparity in the cephalon (SOV and SOR) increased in the same time
which means the peak of morphological disparity appeared after the peak of taxonomic diversity. This could be because the rising Eifelian competitors which have similar ecological niche of Phacopida
restrained the taxonomic diversity of Phacopida
but these competitors has also increased competition between species in the same ecological niche and promoted the morphological innovation in the cephalon of new species of Phacopida.
龚一鸣 , 史晓颖 , 刘本培 . 《地史学》教学60年 [J ] . 地球科学(中国地质大学学报) , 2012 , 37 ( S2 ): 1 - 6 .
GONG Y M , SHI X Y , LIU B P . Sixty years teaching of Historical Geology in china university of geoscience [J ] . Earth Science (Journal of China University of Geosciences) , 2012 , 37 ( S2 ): 1 - 6 .
GAPP I W , CONGREVE C R , LIEBERMAN B S . Unraveling the phylogenetic relationships of the Eccoptochilinae, an enigmatic array of Ordovician cheirurid trilobites [J ] . PLoS One , 2012 , 7 ( 11 ): e49115 .
PÄRNASTE H . The Early Ordovician trilobite distribution and zonation of the East Baltic [J ] . Proceedings of the Estonian Academy of Sciences. Geology , 2006 , 55 ( 2 ): 109 - 127 .
SANDFORD A C , HOLLOWAY D J . Early Silurian phacopide trilobites from central Victoria, Australia [J ] . Memoirs of the Museum of Victoria , 2006 , 63 : 215 - 255 .
CHLUPÁĈ I . Devonian trilobites-evolution and events [J ] . Geobios , 1994 , 27 ( 4 ): 487 - 505 .
BAULT V , CRÔNIER C , MONNET C . Morphological disparity trends in Devonian trilobites from North Africa [J ] . Palaeontology , 2022 , 65 ( 4 ): e12623 .
LIU M , CHEN D , JIANG L , et al . Oceanic anoxia and extinction in the latest Ordovician [J ] . Earth and Planetary Science Letters , 2022 , 588 : 117553 .
WHITTINGTON H B , CHATTERTON B D E , SPEYER S E , et al . Treatise on invertebrate paleontology: Part O. Arthropoda 1 [M ] . Boulder : Geological Society of America & University of Kansas Press , 1959 : 560 .
JELL P A , ADRAIN J M . Available generic names for trilobites [J ] . Memoirs of the Queensland Museum , 2003 , 48 ( 2 ): 331 - 551 .
GON S M III . A pictorial guide to the orders of trilobites [EB/OL ] . ( 2008-05-19 )[ 2025-02-22 ] . http://trilobites.info/orders/ http://trilobites.info/orders/ .
CRÔNIER C , BIGNON A , FRANÇOIS A . Morphological and ontogenetic criteria for defining a trilobite species: The example of Siluro-Devonian Phacopidae [J ] . Comptes Rendus Palevol , 2011 , 10 ( 2 ): 143 - 153 .
ZELDITCH M L , SWIDERSKI D L , SHEETS H D . Geometric morphometrics for biologists: A primer [M ] . San Diego : Academic Press , 2004 .
BOOKSTEIN F L . Morphometric tools for landmark data: Geometry and Biology [M ] . Cambridge : Cambridge University Press , 1992 .
GUNZ P , MITTEROECKER P . Semilandmarks: A method for quantifying curves and surfaces [J ] . Hystrix, the Italian Journal of Mammalogy , 2013 , 24 ( 1 ): 103 - 109 .
ROHLF F J . Tpsdig, digitize landmarks and outlines: version 2.05 [M ] . NY : State University of New York , 2006 .
ROHLF F J . The tps series of software [J ] . Hystrix , 2015 , 26 ( 1 ): 9 - 12 .
ROHLF F J , SLICE D . Extensions of the Procrustes method for the optimal superimposition of landmarks [J ] . Systematic Biology , 1990 , 39 ( 1 ): 40 - 59 .
HAMMER Ø , HARPER D A T . PAST: Paleontological statistics software package for education and data analysis version 2.09 [M ] . Oslo : Øster Geological Museum , 2001 .
GUILLERME T , PUTTICK M N , MARCY A E , et al . Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? [J ] . Ecology & Evolution , 2020 , 10 ( 14 ): 7261 - 7275 .
FOOTE M . Morphological and taxonomic diversity in clade's history: The blastoid record and stochastic simulations [J ] . Paleobiology , 1991 , 17 ( 1 ): 57 - 73 .
徐光冰 , 高齐圣 . MINITAB在可靠性数据分析中的应用 [J ] . 电子质量 , 2006 ( 12 ): 28 - 30 .
XU G B , GAO Q S . The application of MINITAB in reliability data analysis [J ] . Electronics Quality , 2006 ( 12 ): 28 - 30 .
SONG H , WIGNALL P B , SONG H , et al . Seawater temperature and dissolved oxygen over the past 500 million years [J ] . Journal of Earth Science , 2019 , 30 ( 2 ): 236 - 243 .
TROTTER J A , WILLIAMS I S , BARNES C R , et al . Did cooling oceans trigger ordovician biodiversification? Evidence from conodont thermometry [J ] . Science , 2008 , 321 : 550 - 554 .
EDWARDS C T , SALTZMAN M R , ROYER D L , et al . Oxygenation as a driver of the Great Ordovician Biodiversification Event [J ] . Nature Geoscience , 2017 , 10 ( 12 ): 925 - 929 .
WEBBY B D , PARIS F , DROSER M L , et al . The great ordovician biodiversification event [M ] . New York : Columbia University Press , 2004 .
MILLER A I . The Ordovician Radiation: Macroevolutionary crossroads of the phanerozoic [C ] // TALENT J A . Earth and Life . Dordrecht : Springer , 2012 : 231 - 239 .
ADRAIN J M , WESTROP S R , FORTEY R A . Trilobites: Global patterns [C ] // WEBBY B D , DROSER M L , PARIS F , et al . The great ordovician biodiversification event . New York : Columbia University Press , 2004 : 231 - 239 .
FORTEY R A . Trilobites: Adaptive deployment [C ] // WEBBY B D , DROSER M L , PARIS F , et al . The great ordovician biodiversification event . New York : Columbia University Press , 2004 : 249 - 253 .
ZHOU Z Y , YUAN W W , ZHOU Z Q . Evolutional trends and palaeobiogeography of the Ordovician trilobite Ovalocephalus Koroleva 1959 [J ] . Proceedings of the Royal Society B (Biological Sciences) , 2010 , 277 : 257 - 266 .
HAQ B U , SCHUTTER S R . A chronology of paleozoic sea-level changes [J ] . Science , 2008 , 322 : 64 - 68 .
BOTTJER D J , AUSICH W I . Phanerozoic development of tiering in soft substrata suspension-feeding communities [J ] . Paleobiology , 1986 , 12 ( 4 ): 400 - 420 .
MILLS B J W , KRAUSE A J , JARVIS I , et al . Evolution of atmospheric O 2 through the Phanerozoic, revisited [J ] . Annual Review of Earth and Planetary Sciences , 2023 , 51 : 253 - 276 .
SALTZMAN M R , EDWARDS C T , ADRAIN J M , et al . Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations [J ] . Geology , 2015 , 43 ( 9 ): 807 - 810 .
MILLER A I , MAO S . Association of orogenic activity with the Ordovician Radiation of marine life [J ] . Geology , 1995 , 23 ( 4 ): 305 - 308 .
MILLER A I . A new look at age and area: The geographic and environmental expansion of genera during the Ordovician radiation [J ] . Paleobiology , 1997 , 23 ( 4 ): 410 - 419 .
VALENTINE J W . Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited [J ] . Palaios , 1995 , 10 ( 3 ): 190 - 194 .
OYSTON J W , HUGHES M , WAGNER P J , et al . What limits the morphological disparity of clades? [J ] . Interface Focus , 2015 , 5 ( 6 ): 20150042 .
DAHL T W , HAMMARLUND E U , RASMUSSEN C M , et al . Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions-insights from molybdenum and uranium isotopic global redox proxies [J ] . Earth-Science Reviews , 2021 , 220 : 103748 .
RONG J Y , HARPER D A T , HUANG B , et al . The latest Ordovician Hirnantian brachiopod faunas: New global insights [J ] . Earth-Science Reviews , 2020 , 208 : 103280 .
FINNEGAN S , BERGMANN K , EILER J M , et al . The magnitude and duration of Late Ordovician-Early Silurian glaciation [J ] . Science , 2011 , 331 : 903 - 906 .
NIELSEN A T . A re-calibrated revised sea-level curve for the Ordovician of Baltoscandia [C ] // GUTIÉRREZ-MARCO J C , RÁBANO I , GARCÍA-BELLIDO D . ISOS-ordovician of the world . Madrid : Instituto Geolgicoy Minero de Espaóa , 2011 : 399 - 401 .
HARPER D A T , HAMMARLUND E U , RASMUSSEN C M Ø . End ordovician extinctions: A coincidence of causes [J ] . Gondwana Research , 2014 , 25 ( 4 ): 1294 - 1307 .
LIU M , YUAN W , FANG C , et al . Mercury isotope evidence for Middle Ordovician photic-zone euxinia: Implications for termination of the Great Ordovician Biodiversification Event [J ] . Gondwana Research , 2024 , 125 : 1294 - 1307 .
HAMMARLUND E U , DAHL T W , HARPER D A T , et al . A sulfidic driver for the end-Ordovician mass extinction [J ] . Earth and Planetary Science Letters , 2012 , 331 : 128 - 139 .
RONG J Y , HARPER D A T . The Ordovician-Silurian boundary and the Hirnantian fauna [J ] . Lethaia , 1988 , 21 ( 2 ): 168 - 168 .
VALENTINE J W . Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time [J ] . Palaeontology , 1969 , 12 ( 4 ): 684 - 709 .
MUNNECKE A , CALNER M , HARPER D A T , et al . Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis [J ] . Palaeogeography, Palaeoclimatology, Palaeoecology , 2010 , 296 ( 3/4 ): 389 - 413 .
ALDRIDGE R J , JEPPSSON L , DORNING K J . Early Silurian oceanic episodes and events [J ] . Journal of the Geological Society , 1993 , 150 ( 3 ): 501 - 513 .
CHATTERTON B D E , EDGECOMBE G D , TUFFNELL P A . Extinction and migration in Silurian trilobites and conodonts of northwestern Canada [J ] . Journal of the Geological Society , 1990 , 147 ( 4 ): 703 - 715 .
TROTTER J A , WILLIAMS I S , BARNES C R , et al . New conodont δ 18 O records of Silurian climate change: Implications for environmental and biolog ical events [J ] . Palaeogeography, Palaeoclimatology, Palaeoecology , 2016 , 443 : 34 - 48 .
RAMSKÖLD L . Studies on silurian trilobites from gotland, sweden [J ] . Stockholm Contributions in Geology , 1985 , 24 : 1 - 24 .
BAULT V , BAISERO D , MONNET C , et al . Post-Ordovician trilobite diversity and evolutionary faunas [J ] . Earth-Science Reviews , 2022 , 230 : 104035 .
BAULT V , CRÔNIER C , MONNET C , et al . Rise and fall of the phacopids: The morphological history of a successful trilobite family [J ] . Palaeontology , 2023 , 66 ( 5 ): e12673 .
TINN O , MEIDLA T , AINSAAR L . Diving with trilobites: Life in the Silurian-Devonian Seas [C ] // MARTINETTO E , > TSHOPP E , > GASTALDO R A . Nature through time . Cham : Springer , 2020 : 345 - 366 .
CARBONARO F A , LANGER M C , NIHEI S S , et al . Inferring ancestral range reconstruction based on trilobite records: A study-case on Metacryphaeus (Phacopida, Calmoniidae) [J ] . Scientific Reports , 2018 , 8 : 15179 .
FOOTE M . Discordance and concordance between morphological and taxonomic diversity [J ] . Paleobiology , 1993 , 19 ( 2 ): 185 - 204 .
CROSS S R , MOON B C , STUBBS T L , et al . Climate, competition, and the rise of mosasauroid ecomorphological disparity [J ] . Palaeontology , 2022 , 65 ( 4 ): e12590 .
FEIST R , MCNAMARA K , CRONIER C , et al . Patterns of extinction and recovery of phacopid trilobites during the Frasnian-Famennian (Late Devonian) mass extinction event, Canning Basin, Western Australia [J ] . Geological Magazine , 2009 , 146 ( 1 ): 12 - 33 .
MA X , ZONG P . Middle and Late Devonian brachiopod assemblages, sea level change and paleogeography of Hunan, China [J ] . Science China Earth Sciences , 2010 , 53 ( 12 ): 1849 - 1863 .
WALLISER O H . Global events in the Devonian and Carboniferous [C ] // WALLISER O H . Global events and event stratigraphy in the Phanerozoic . Berlin : Springer , 1996 : 225 - 250 .
SMART M S , FILIPPELLI G , GILHOOLY W P , et al . The expansion of land plants during the Late Devonian contributed to the marine mass extinction [J ] . Communications Earth & Environment , 2023 , 4 : 449 .
MEYER-BERTHAUD B , SCHECKLER S E , WENDT J . Archaeopteris is the earliest known modern tree [J ] . Nature , 1999 , 398 : 700 - 701 .
ALGEO T J , BERNER R A , MAYNARD J B , et al . Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants [J ] . GSA Today , 1995 , 5 ( 3 ): 45 - 66 .
CARMICHAEL S K , WATERS J A , KOENIGSHOF P , et al . Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression [J ] . Global and Planetary Change , 2019 , 183 : 102984 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构