浏览全部资源
扫码关注微信
1.中国石油长庆油田分公司,陕西 西安 710018
2.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
3.河南理工大学 资源环境学院,河南 焦作 454003
4.河南省生物遗迹与成矿过程国际联合实验室,河南 焦作 454003
包洪平,男,教授级高级工程师,从事油气成藏地质及勘探部署研究,bhp_cq@petrochina.com.cn。
师平平,男,工程师,从事油气成藏地质及勘探部署研究,spping_cq@petrochina.com.cn
纸质出版日期:2024-12-25,
收稿日期:2024-06-17,
移动端阅览
包洪平, 魏柳斌, 张立军, 等. 鄂尔多斯盆地东部奥陶系马四段生物扰动构造形成的群落古生态及其对储层发育的控制[J]. 西北大学学报(自然科学版), 2024,54(6):975-992.
BAO HONGPING, WEI LIUBIN, ZHANG LIJUN, et al. Community paleoecology formed by bioturbation and its control over reservoir development in Ma 4 Member of Ordovician Majiagou Formation in eastern Ordos Basin. [J]. Journal of northwest university (natural science edition), 2024, 54(6): 975-992.
包洪平, 魏柳斌, 张立军, 等. 鄂尔多斯盆地东部奥陶系马四段生物扰动构造形成的群落古生态及其对储层发育的控制[J]. 西北大学学报(自然科学版), 2024,54(6):975-992. DOI: 10.16152/j.cnki.xdxbzr.2024-06-004.
BAO HONGPING, WEI LIUBIN, ZHANG LIJUN, et al. Community paleoecology formed by bioturbation and its control over reservoir development in Ma 4 Member of Ordovician Majiagou Formation in eastern Ordos Basin. [J]. Journal of northwest university (natural science edition), 2024, 54(6): 975-992. DOI: 10.16152/j.cnki.xdxbzr.2024-06-004.
鄂尔多斯盆地奥陶系马家沟组四段马四段形成于最大海侵(海泛)沉积期,属于正常海相沉积环境,海洋生物极其繁盛,在碳酸盐沉积物(尤其是灰泥沉积物)中形成了较为强烈的生物扰动构造。依据近年来盆地内部大量的探井取芯和盆地东缘野外露头地质剖面的综合研究,系统分析了盆地东部马四段的生物扰动构造(遗迹化石)及可能的群落古生态特征,并探讨了生物扰动对于岩石储层发育的控制作用,形成以下主要认识。①马四段生物扰动构造具有普遍性发育的特点,突出表现在大部分层段纵向上连续地发育生物扰动和在横向上广泛分布,表明在其沉积发育的整个过程中底栖生物群落异常活跃,呈现为在较长的地史时期内“生生不息”、不间断地延续着的一种基本相似的生活、生命及生态场景。②本区马四段生物扰动构造类型多样,结合生物扰动构造(遗迹化石)的化石碎片门类鉴定与埋藏学分析认为本区马四段强烈的生物扰动构造主要是由蠕型动物、腹足类、三叶虫及介形类等所为;再结合岩石微相的研究,可将本区马四段划分为5个典型的古生物群落(群落古生态)类型,其演进次序也依次代表了海平面变浅旋回中的古生态环境(沉积环境)演化从早期开阔广海到末期潮上云坪藻席的主要阶段。③本区马四段广泛发育的生物扰动为选择性白云石(岩)化提供了基础条件,也为储层孔隙的形成和有效保持提供了基本保障,进而间接地控制了有效储层的发育。
The Ma 4 Member of the Ordovician Majiagou Formation in the Ordos Basin was formed during the period of maximum marine transgression sedimentation
belonging to a normal marine sedimentary environment
and having extremely abundant marine organisms. Strong bioturbation structures have formed in carbonate sediments
especially in lime mud sediments. Based on a comprehensive study of outcrop geological profiles in the eastern margin of the basin
and a large number of core data of exploration well drilled within the basin in recent years
this article analyzed systematically the characteristics of bioturbation structures (trace fossils) and possible paleoecological characteristics of the community in the Ma 4 Member of the eastern basin
and explored the control effect of biological disturbance on the development of rock reservoirs. The main understandings had been formed as follows: ①The biological disturbance structure in Ma 4 Member has the characteristic of universal development
which is mainly manifested in the continuous development of biological disturbances in most layers vertically and their widespread distribution horizontally. This indicates that benthic communities had abnormal activity throughout the sedimentary development process
presenting as a basically similar living
life and ecology scene that continues endlessly without interruption throughout a long period of geological history; ②There are various types of biological disturbance structures in the Ma 4 Member of this area. Based on the identification of fossil fragment categories and fossil burial analysis
combined with the research on bioturbation structures (trace fossils)
it is believed that the strong bioturbation structures in the Ma 4 section of this area are mainly caused by creeping worms
gastropods
trilobites
and ostracods
etc. Through the combination of further research on rock microfacies
the Ma 4 Member of this area can be divided into five typical types of paleontological communities (community paleoecology). The evolutionary sequence also represents the main stages of ancient ecological environment (sedimentary environment) evolution from early open sea to late algae mats of supratidal dolomite flat. ③The biological disturbance extensively developed in Ma 4 Member of this area provided the basic conditions for selective dolomitization
further more
provided a basic guarantee for the formation and effective maintenance of reservoir pores. Therefore
the biological disturbance indirectly controlled the development of effective reservoirs.
鄂尔多斯盆地马家沟组生物扰动群落古生态豹皮灰岩
Ordos BasinMajiagou Formationbiological disturbancecommunity paleoecologyleopard-skined limestone
包洪平, 杨承运, 黄建松. “干化蒸发”与“回灌重溶”:对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识[J]. 古地理学报, 2004, 6(3): 279-288.
BAO H P, YANG C Y, HUANG J S. “Evaporation drying”and “reinfluxing and redissolving”: A new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin[J]. Journal of Palaeogeography, 2004, 6(3): 279-288.
邵东波, 包洪平, 魏柳斌, 等. 鄂尔多斯盆地奥陶纪构造古地理演化与沉积充填特征[J]. 古地理学报, 2019, 21(4): 537-556.
SHAO D B, BAO H P, WEI L B, et al. Palaeogeographic evolution and sedimentary filling characteristics of the Ordovician structures in the Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(4): 537-556.
包洪平, 任军峰, 黄正良, 等. 鄂尔多斯盆地奥陶系沉积与天然气成藏[M]. 北京: 石油工业出版社, 2023: 1-316.
杨华, 包洪平, 马占荣. 侧向供烃成藏——鄂尔多斯盆地奥陶系膏盐下天然气成藏新认识[J]. 天然气工业, 2014, 34(4): 19-26.
YANG H, BAO H P, MA Z R. Reservoir-forming by lateral supply of hydrocarbon: A newunderstanding of the formation of Ordovician gas reservoirs undergypsolyte in the Ordos Basin[J]. Natural Gas Industry, 2014, 34(4): 19-26.
付金华, 刘新社, 魏柳斌, 等. 鄂尔多斯盆地奥陶系盐下马家沟组四段天然气勘探突破及意义[J]. 中国石油勘探, 2022, 27(2): 47-58.
FU J H, LIU X S, WEI L B, et al. Breakthrough and significance of natural gas exploration in the fourth member of Majiagou Formation of subsalt Ordovician in Ordos Basin[J]. China Petroleum Exploration, 2022, 27(2): 47-58.
吴东旭, 喻建, 周进高, 等. 鄂尔多斯盆地奥陶系马家沟组四段沉积特征及其控储效应[J]. 古地理学报, 2021, 23(6): 1140-1157.
WU D X, YU J, ZHOU J G, et al. Sedimentary characteristcs and reservoir controlling effect of the Member 4 of Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Palaeogeography, 2021, 23(6): 1140-1157.
周进高, 张涛, 于洲, 等. 鄂尔多斯盆地奥陶系马家沟组四段沉积期岩相古地理及其控储效应[J]. 中国石油勘探, 2022, 27(4): 61-74.
ZHOU J G, ZHANG T, YU Z, et al. Lithofacies paleogeography in the deposition period of the fourth member of the Ordovician Majiagou Formation and its reservoir control effect, Ordos Basin[J]. China Petroleum Exploration, 2022, 27(4): 61-74.
牟春国, 许杰, 古永红, 等. 鄂尔多斯盆地中东部奥陶系马家沟组四段储层特征及主控因素[J]. 石油实验地质, 2023, 45(4): 780-790.
MOU C G, XU J, GU Y H, et al. Reservoir characteristics and main controlling factors of the fourth member of Ordovician Majiagou Formation in the central and eastern Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 780-790.
于洲, 王维斌, 魏柳斌, 等. 鄂尔多斯盆地奥陶系马家沟组四段构造-岩相古地理新认识及勘探意义[J]. 地质学报, 2023, 97(8): 2645-2658.
YU Z, WANG W B, WEI L B, et al. Tectonic paleogeographic framework of the fourth member of Ordovician Majiagou Formation in Ordos Basin and its significance for oil and gas exploration[J]. Acta Geologica Sinica, 2023, 97(8): 2645-2658.
于洲, 胡子见, 王前平, 等. 鄂尔多斯分地中东部奥陶系深层白云岩储集层特征及主控因素[J]. 古地理学报, 2023, 25(4): 931-944.
YU Z, HU Z J, WANG Q P, et al. Characteristics and main controlling factors of the Ordovician deep dolomite reservoirs in mid-eastern Ordos Basin[J]. Journal of Palaeogeography, 2023, 25(4): 931-944.
包洪平, 杨帆, 蔡郑红, 等. 鄂尔多斯地区奥陶系白云岩成因及白云岩储层发育特征[J]. 天然气工业, 2017, 37(1): 32-45.
BAO H P, YANG F, CAI Z H, et al. Genesis and reservoirs development characteristics of Ordovician in Ordos Basin[J]. Natural Gas Industry, 2017, 37(1): 32-45.
武永强, 吴卓丹. 太原西山奥陶系豹皮灰岩的成因[J]. 山西矿业学院学报, 1995, 13(2): 161-166.
WU Y Q, WU Z D. The origin of Baopi limestones in Ordovician of Taiyuan Xishan[J]. Shanxi Mining Institute Learned Journal, 1995, 13(2): 161-166.
陈战杰, 张镔. 关于“豹皮灰岩”的成因[J]. 矿物岩石, 1991, 21(2): 41-46.
CHEN Z J, ZHANG B. On the origin of the baopi limestones[J]. Mineralogy and Petrology, 1991, 21(2): 41-46.
董小波, 牛永斌. 豫西北奥陶系马家沟组三段豹斑灰岩的生物潜穴成因及成岩演化[J]. 现代地质, 2015, 29(4): 833-843.
DONG X B, NIU Y B. Biological burrow explanation of leopard limestone and its diagenetic evolution in the third Member of Majiagou Formation in Ordovician, northwest of Henan Province[J]. Geoscience, 2015, 29(4): 833-843.
贾振远, 马淑媛. 山东莱芜地区下古生界豹斑灰岩的成因及其意义[J]. 地质论评, 1984, 30(3): 224-228.
JIA Z Y, MA S Y. The origin and significance of Lower Paleozoic patchy limestone in Laiwu, Shandong Province[J]. Geological Review, 1984, 30(3): 224-228.
冯诗海. 秦皇岛石门寨地区奥陶系亮甲山组豹皮灰岩与马家沟组白云岩成因研究[D]. 西安: 西北大学, 2015.
李定龙, 杨为民, 程学丰, 等. 试论皖北奥陶纪豹皮灰岩的古岩溶成因[J]. 地质论评, 1999, 45(5): 463-469.
LI D L, YANG W M, CHENG X F, et al. A discussion on the genesis of the leopard for limestone of Ordovician Period in northern Anhui, China[J]. Geological Review, 1999, 45(5): 463-469.
翟淳. 论豹皮灰岩的形成[J]. 北京地质学院学报, 1961, 5(13): 90-112.
ZHAI C. On the formation of leopard limestone[J]. Journal of Beijing Institute of Geology, 1961, 5(13): 90-112.
魏柳斌, 王宗延, 李漪, 等. 豹皮(斑)状碳酸盐岩分类与成因初探:以鄂尔多斯盆地马家沟组四段为例[J]. 古地理学报, 2024, 26(4): 880-894.
WEl L B, WANG Z Y, LI Y, et al. Classification of Leopard skin (spot) carbonate rock and their formation[J]. Journal of Palaeogeography, 2024, 26(4): 880-894.
王起琮, 闫佐, 宁博, 等. 鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因[J]. 古地理学报, 2016, 18(1): 39-48.
WANG Q C, YAN Z, NING B, et al. Characteristics and genesis of leopard limestone of the Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Palaeogeography, 2016, 18(1): 39-48
张天付, 周进高, 熊冉, 等. 华北地台东部奥陶系蠕虫状灰岩的结构特征及成因探讨[J]. 地球化学, 2018, 47(5): 463-477.
ZHANG T F, ZHOU J G, XIONG R, et al. Characteristics and origin of Ordovician vermicular limestone in the eastern North China Platform[J]. Geochimica, 2018, 47(5): 463-477.
刘梦瑶, 齐永安, 史云鹤, 等. 华北寒武纪-奥陶纪豹皮状碳酸盐岩系生物扰动成因[J]. 沉积学报, 2020, 38(1): 91-103.
LIU M Y, QI Y A, SHI Y H, et al. Formation mechanism of Cambrian-Ordovician bioturbated dolomites in North China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 91-103.
许杰, 肖笛, 苏文杰, 等. 鄂尔多斯盆地东缘奥陶系马家沟组四段豹斑状云质灰岩特征及成因:以关家崖剖面为例[J]. 古地理学报, 2022, 24(2): 261-277.
XU J, XIAO D, SU W J, et al. Characteristics and genesis of leopard spotted dolomitic limestone in the Member 4 of Ordovician Majiagou Formation: A case study from Guanjiaya section in eastern margin of Ordos Basin[J]. Journal of Palaeogeography, 2022, 24(2): 261-277.
杨式溥. 古生态学——原理与方法[M]. 北京: 地质出版社, 1993: 1-228.
EKDALE A A, BROMLEY R G, PEMBERTON S G. Ichnology: The use of trace fossils in sedimentology and stratigraphy[M]. Tulsa: Society of Economic Paleontologists and Mineralogists, 1984.
BROMLEY R G. Trace fossils: Biology, taphonomy and applications[M]. 2nd ed. London: Chapman & Hall, 1996.
GINGRAS M K, MENDOZA C A, PEMBERTON S G. Fossilized worm burrows influence the resource quality of porous media[J]. AAPG Bulletin, 2004, 88(7): 875-883.
SEILACHER A. Trace fossil analysis[M]. Heidelberg: Springer-Verlag, 2007.
BUATOIS L A, MÁNGANO M G. Ichnology: Organism-substrate interactions in space and time[M]. Cambridge: Cambridge University Press, 2011.
TAYLOR A, GOLDRING R, GOWLAND S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3/4): 227-259.
KNAUST D, BROMLEY R. Trace fossils as indicators of sedimentary environments[M]. Boston: Elsevier, 2012.
KNAUST D. Atlas of trace fossils in well core[M]. Cham: Springer International Publishing, 2017.
张立军. 鄂尔多斯盆地奥陶系盐下马四段生物遗迹与储层评价方法[R]. 西安: 长庆油田, 2023.
SEILACHER A. Bathymetry of trace fossils[J]. Marine Geology, 1967, 5(5/6): 413-428.
SEILACHER A. Evolution of trace fossil communities[M]. Amsterdam: Elsevier, 1977: 359-376.
谭光弼. 古生物学简明教程[M]. 北京: 地质出版社, 1983: 1-306.
余素玉. 化石碳酸盐岩微相[M]. 北京: 地质出版社, 1989: 1-167.
MYROW P M. Thalassinoides and the enigma of early Paleozoic open-framework burrow systems[J]. Palaios, 1995, 10(1): 58-74.
CHERNS L, WHEELEY J R, KARIS L. Tunneling trilobites: Habitual infaunalism in an Ordovician carbonate seafloor[J]. Geology, 2006, 34(8): 657-660.
JIN J S, HARPER D A T, RASMUSSEN J A, et al. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 367/368: 73-88.
ZIEGLER B. Introduction to palaeobiology: General palaeontology[M]. London: Ellis Horwood Limited, 1983.
科普中国网. 澄江生物群[EB/OL]. (2021-12-31)[2024-03-10]. http://www.kepuchina.cn/article/articleinfo?business_type=100&ar_id=360953http://www.kepuchina.cn/article/articleinfo?business_type=100&ar_id=360953.
王红梅, 吴晓萍, 邱轩, 等. 微生物成因的碳酸盐矿物研究进展[J]. 微生物学通报, 2013, 40(1): 180-189.
WANG H M, WU X P, QIU X, et al. Microbially induced carbonate precipitation: A review[J]. Microbiology China, 2013, 40(1): 180-189.
VASCONCELOS C, MCKENZIE J A, BERNASCONI S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377: 220-222.
BANIAK G M, GINGRAS M K, PEMBERTON S G. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada[J]. Marine and Petroleum Geology, 2013, 48: 275-292.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构