浏览全部资源
扫码关注微信
1.西北大学 地质学系/大陆动力学国家重点实验室,陕西 西安 710069
2.中国科学技术大学 地球和空间科学学院/中国科学院壳幔物质与环境重点实验室,安徽 合肥 230026
曹旭阳,男,从事沉积古环境研究,caoxy0102@163.com。
韩以贵,男,教授,博士生导师,从事造山带演化与超大陆重建研究,hanyigui@nwu.edu.cn。
纸质出版日期:2024-08-25,
收稿日期:2024-03-25,
扫 描 看 全 文
曹旭阳, 韩以贵, 鞠鹏程, 等. 塔里木盆地西北缘早寒武世玉尔吐斯组硅质岩成因[J]. 西北大学学报(自然科学版), 2024,54(4):715-728.
CAO Xuyang, HAN Yigui, JU Pengcheng, et al. Genesis of Early Cambrian cherts of the Yurtus Formation in northwestern Tarim Basin[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):715-728.
曹旭阳, 韩以贵, 鞠鹏程, 等. 塔里木盆地西北缘早寒武世玉尔吐斯组硅质岩成因[J]. 西北大学学报(自然科学版), 2024,54(4):715-728. DOI: 10.16152/j.cnki.xdxbzr.2024-04-013.
CAO Xuyang, HAN Yigui, JU Pengcheng, et al. Genesis of Early Cambrian cherts of the Yurtus Formation in northwestern Tarim Basin[J]. Journal of Northwest University (Natural Science Edition), 2024,54(4):715-728. DOI: 10.16152/j.cnki.xdxbzr.2024-04-013.
对塔里木盆地西北缘下寒武统玉尔吐斯组硅质岩开展岩石学以及元素与硅同位素地球化学研究,探讨硅质岩的成因及沉积模式。岩石学观察表明,玉尔吐斯组中段硅质岩主要由隐晶硅质和微晶石英组成,未见碎屑石英,排除了陆源输入对硅质岩沉积的影响。玉尔吐斯组下段硅质岩相对富Fe且具有显著的Eu正异常,反映了硅质岩可能主要来源于海底热液;而中段硅质岩显示Y/Ho比值较高、中等Ce负异常、LREE亏损和Y正异常,说明硅质来源主要为海水,这也符合中段硅质岩具有总体偏向热水来源的δ
30
Si值。此外,氧化还原敏感元素指标表明,玉尔吐斯组硅质岩的沉积环境为表层海水氧化,而底层海水缺氧甚至硫化。研究认为,玉尔吐斯组硅质岩的沉积模式为:下段硅质岩由大量富硅热液在上升流作用下直接沉积,之后热液活动减弱,氧化还原分层海洋促进海水中溶解的硅和铁循环耦合,硅质以Fe
3+
-Si胶体形式共沉积,当硫化水域盛行时铁和硅循环解耦,沉积黑色页岩,形成中段硅质岩和黑色页岩互层。
This study employed petrological
elemental and silico
n isotopic geochemical studies of the cherts from the lowest Cambrian Yurtus Formation in the northwestern margin of the Tarim Basin.The genesis and sedimentary model of the cherts were discussed. Petrological observations indicate that the cherts in the middle Yurtus Formation are mostly composed of cryptocrystalline and microcrystalline quartz without clastic quartz
which excludes the influence of terrigenous input on the chert deposition.The cherts in the lower Yurtus Formation are relatively Fe-rich and have a significantly positive Eu anomaly
which suggests that the cherts were likely originated from submarine hydrothermal fluids.In contrast
the middle Yurtus Formation cherts show high Y/Ho ratio
moderate negative Ce anomaly
LREE depletion
and positive Y anomaly
indicating that the cherts were mainly sourced from seawater.This is also consistent with their δ
30
Si values that bias to hot water sources. In addition
the redox-sensitive element proxies indicate that the sedimentary environment of the cherts of the Yurtus Formation was probably oxidized for the surface seawater
while is anoxic or even euxinic for the bottom seawater. This study proposes that a sedimentary model for the cherts of the Yurtus Formation as follows: the cherts in the lower section were directly sourced from large amounts of silica-rich hydrothermal fluids under the influence of upwelling. Subsequently
the hydrothermal activities weakened and the redox-stratified ocean facilitated the coupled cycling of dissolved silicon and iron in seawater
and the silicon was co-deposited in the form of Fe
3+
-Si colloidal. During the dominance of the euxinic zone
the iron and silicon cycle was decoupled
leading to the deposition of black shale and the formation of interbedded cherts and black shales in the middle section.
塔里木盆地早寒武世玉尔吐斯组硅质岩沉积环境
Tarim BasinEarly CambrianYurtus Formationchertsedimentary environment
ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286.
LI C, SHI W, CHENG M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149.
LYONS T W, DIAMOND C W, PLANAVSKY N J, et al. Oxygenation, life, and the planetary system during earth’s middle history: An overview[J]. Astrobiology, 2021, 21(8): 906-923.
GAO P, LI S J, LASH G G, et al. Silicification and Si cycling in a silica-rich ocean during the Ediacaran-Cambrian transition[J]. Chemical Geology, 2020, 552: 119787.
LI C Q, DONG L, MA H R, et al. Formation of the massive bedded chert and coupled Silicon and Iron cycles during the Ediacaran-Cambrian transition[J]. Earth and Planetary Science Letters, 2022, 594: 117721.
FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J]. Geological Society of America Bulletin, 2009, 121(1/2): 222-235.
YE Y, FRINGS P J, BLANCKENBURG F V, et al. Silicon isotopes reveal a decline in oceanic dissolved silicon driven by biosilicification: A prerequisite for the Cambrian Explosion?[J]. Earth and Planetary Science Letters, 2021, 566: 116959.
CHANG H J, CHU X L, FENG L J, et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts of the Liuchapo Formation, South China[J]. Science in China Series D (Earth Sciences), 2009, 52(6): 807-822.
RAMSEYER K, AMTHOR J E, MATTER A, et al. Primary silica precipitate at the Precambrian/Cambrian boundary in the south Oman salt basin, sultanate of Oman[J]. Marine and Petroleum Geology, 2013, 39(1): 187-197.
DONG L, SHEN B, LEE C T, et al. Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: Implications for the bedded chert formation and paleoenvironment interpretations[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 751-763.
TATZEL M, BLANCKENBURG F V, OELZE M, et al. Late Neoproterozoic seawater oxygenation by siliceous sponges[J]. Nature Communications, 2017, 8(1): 1-9.
ZHOU X Q, CHEN D Z, QING H R, et al. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, Northwest China[J]. International Geology Review, 2014, 56(15): 1906-1918.
GUAN Z X, DENG S B, LIU P X, et al. Germanium/silica ratio and trace element composition of Early Cambrian siliceous rocks in Keping: Implications for the siliceous rocks’ formation and paleoenvironment interpretations[J]. Acta Geochimica, 2020, 39: 797-810.
ZHAO G Y, DENG Q, ZHANG H Z, et al. Trace elements and stable isotopic geochemistry of two sedimentary sections in the lower Cambrian strata from the Tarim Basin, northwest China: Implications for silicification and biological evolution[J]. Marine and Petroleum Geology, 2023, 147: 105991.
HE T H, LU S F, LI W H, et al. Paleoweathering, hydrothermal activity and organic matter enrichment during the formation of earliest Cambrian black strata in the northwest Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106987.
ZHAO G C, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222: 13-54.
HAN Y G, ZHAO G C, SUN M, et al. Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone[J]. Lithos, 2016, 247: 1-12.
LU L H, HAN Y G, ZHAO G C, et al. Depositional processes of Marinoan-age diamictites and cap carbonates in northwestern Tarim, China: Implications for chemical weathering following the Marinoan deglaciation[J]. Geological Society of America Bulletin, 2024, 136(5/6): 2443-2459.
ZHU G Y, LI T T, ZHAO K, et al. Mo isotope records from Lower Cambrian black shales, northwestern Tarim Basin (China): Implications for the early Cambrian ocean[J]. Geological Society of America Bulletin, 2022, 134(1/2): 3-14.
高振家, 吴绍祖, 李永安, 等. 新疆阿克苏—柯坪地区震旦纪—寒武纪地层研究[J]. 科学通报, 1981, 26(12): 741-743.
GAO Z J, WU S Z, LI Y A, et al. Research on Sinian-Cambrian stratigraphy in Aksu-Keping area, Xinjiang[J]. Chinese Science Bulletin, 1981, 26(12): 741-743.
YAO J X, XIAO S H, YIN L M, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, northwest China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708.
钱逸, 冯伟民, 李国祥, 等. 新疆寒武纪早期单壳类软体动物化石分类学与生物地层学[J]. 微体古生物学报, 2009, 26(3): 193-210.
QIAN Y, FENG W M, LI G X, et al. Taxonomy and biostratigraphy of the early Cambrian univalved mollusc fossils from Xinjiang[J]. Acta Micropalaeontologica Sinica, 2009, 26(3): 193-210.
DONG L, XIAO S H, SHEN B, et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu Area (Tarim Block, Northwestern China)[J]. Journal of Paleontology, 2009, 83(1): 30-44.
ZHOU X Q, CHEN D Z, ZHANG L Y, et al. Silica-rich seawater in the early Cambrian: Sedimentological evidence from bedded cherts[J]. Terra Nova, 2021, 33(5): 494-501.
杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136-145.
YANG L, SHI Z, YU H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136-145.
ZHU B, YANG T, WANG J, et al. Multiple controls on the paleoenvironment of the early Cambrian black shale-chert in the northwest Tarim Basin, NW China: Trace element, iron speciation and Mo isotopic evidence[J]. Marine and Petroleum Geology, 2022, 136: 105434.
LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
MCLENNAN S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
张春宇, 管树巍, 吴林, 等. 塔西北地区早寒武世玉尔吐斯组热液作用及沉积模式[J]. 地学前缘, 2019, 26(1): 202-211.
ZHANG C Y, GUAN S W, WU L, et al. Hydrothermal activity and depositional model of the Yurtus Formation in the early Cambrian, NW Tarim, China[J]. Earth Science Frontiers, 2019, 26(1), 202-211.
NOZAKI Y, ZHANG J, AMAKAWA H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
BAU M, DULSKI P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
GOLDSTEIN S J, JACOBSEN S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47.
FANG Y, SU J, WANG X M, et al. The transition from hydrothermal oxic conditions to restricted euxinia in the lower Cambrian Yurtus Formation black shale, Tarim Basin[J]. Marine and Petroleum Geology, 2023, 156: 106420.
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
DOUTHITT C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1449-1458.
丁悌平, 蒋少涌, 万德芳, 等. 硅同位素地球化学[M]. 北京: 地质出版社, 1994.
杨宗玉, 罗平, 刘波, 等. 早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例[J]. 地球科学, 2019, 44(11): 3845-3870.
YANG Z Y, LUO P, LIU B, et al. Depositional characteristics of early Cambrian hydrothermal fluid: A case study of siliceous rocks from Yurtus Formation in Aksu Area of Tarim Basin, Northwest China[J]. Earth Science, 2019, 44(11): 3845-3870.
MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
BAU M, KOSCHINSKY A. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47.
WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
BECHTEL A, SUN Y, PÜTTMANN W, et al. Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany[J]. Chemical Geology, 2001, 176(1/4): 31-49.
ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical geology, 2004, 206(3/4): 289-318.
AKINLUA A, ADEKOLA S A, SWAKAMISA O, et al. Trace element characterisation of Cretaceous Orange Basin hydrocarbon source rocks[J]. Applied Geochemistry, 2010, 25(10): 1587-1595.
ANDERSON R F, FLEISHER M Q, LEHURAY A P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2215-2224.
YAMAUCHI T, KAMON J, WAKI H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nature medicine, 2001, 7(8): 941-946.
KIMURA H, WATANABE Y S. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11): 995-998.
MURRAY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
ZHANG K, SHIELDS G A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution[J]. Earth-Science Reviews, 2022, 229: 104015.
KHAN S A, KHAN K F, DAR S A. REE geochemistry of Early Cambrian phosphorites of Masrana and Kimoi blocks, Uttarakhand, India[J]. Arabian Journal of Geosciences, 2016, 9: 1-10.
SHIELDS G, STILLE P, BRASIER M D, et al. Stratified oceans and oxygenation of the late Precambrian environment: A post glacial geochemical record from the Neoproterozoic of Mongolia[J]. Terra Nova, 1997, 9(5/6): 218-222.
GUO Q J, SHIELDS G A, LIU C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
DENG Q, WANG H Z, WEI Z W, et al. Different accumulation mechanisms of organic matter in Cambrian sedimentary successions in the western and northeastern margins of the Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2021, 207: 104660.
RIQUIER L, TRIBOVILLARD N, AVERBUCH O, et al. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms[J]. Chemical Geology, 2006, 233(1/2): 137-155.
TURNER S A. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China[J]. Precambrian Research, 2010, 181(1/4): 85-96.
YU B S, DONG H L, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
RACKI G. Silica-secreting biota and mass extinctions: survival patterns and processes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(1/2): 107-132.
RACKI G, CORDEY F. Radiolarian palaeoecology and radiolarites: Is the present the key to the past?[J]. Earth-Science Reviews, 2000, 52(1/2/3): 83-120.
BARONAS J J, HAMMOND D E, MCMANUS J, et al. A global Ge isotope budget[J]. Geochimica et Cosmochimica Acta, 2017, 203: 265-283.
KING S L, FROELICH P N, JAHNKE R A. Early diagenesis of germanium in sediments of the Antarctic South Atlantic: In search of the missing Ge sink[J]. Geochimica et Cosmochimica Acta, 2000, 64(8): 1375-1390.
王志宏, 丁伟铭, 李剑, 等. 塔里木盆地西缘下寒武统玉尔吐斯组沉积地球化学及有机质富集机制研究[J]. 北京大学学报(自然科学版), 2020, 56(4): 667-678.
WANG Z H, DING W M, LI J, et al. Paleoenvironment interpretation of early Cambrian Yurtus Formation, Tarim Basin, and its mechanism for organic carbon accumulation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 667-678.
CANFIELD D E, THAMDRUP B, HANSEN J W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867-3883.
BERNSTEIN L R. Germanium geochemistry and mineralogy[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2409-2422.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构