浏览全部资源
扫码关注微信
中国石油化工股份有限公司上海海洋油气分公司,上海 200120
江东辉,男,博士,高级工程师,从事海洋石油地质和区域地质研究,jiangdonghui.shhy@sinopec.com。
纸质出版日期:2024-06-25,
收稿日期:2024-02-26,
扫 描 看 全 文
江东辉. 高频层序划分揭示断陷深湖层系源储共生发育规律以北部湾盆地海中凹陷始新统流沙港组二段为例[J]. 西北大学学报(自然科学版), 2024,54(3):527-540.
JIANG Donghui. High-frequency sequence division reveals the intergrowth development regularity between source rocks and reservoirs of deep lake facies strata in the faulted depressionTaking the Eocene Liushagang 2 interval in Haizhong Depression, Beibuwan Basin as an example[J]. Journal of Northwest University (Natural Science Edition), 2024,54(3):527-540.
江东辉. 高频层序划分揭示断陷深湖层系源储共生发育规律以北部湾盆地海中凹陷始新统流沙港组二段为例[J]. 西北大学学报(自然科学版), 2024,54(3):527-540. DOI: 10.16152/j.cnki.xdxbzr.2024-03-016.
JIANG Donghui. High-frequency sequence division reveals the intergrowth development regularity between source rocks and reservoirs of deep lake facies strata in the faulted depressionTaking the Eocene Liushagang 2 interval in Haizhong Depression, Beibuwan Basin as an example[J]. Journal of Northwest University (Natural Science Edition), 2024,54(3):527-540. DOI: 10.16152/j.cnki.xdxbzr.2024-03-016.
以北部湾盆地海中凹陷始新统流沙港组二段断陷湖盆深湖沉积体系为例,以高分辨率层序地层学理论为指导,利用最大熵谱分析与小波变换分析技术对流二段进行高频层序划分,在对沉积体系发育规律分析的基础上,通过流二段各五级层序深湖相烃源岩及湖底扇重力流相砂岩发育规律的分析,探讨断陷湖盆深湖层系源储共生的发育规律。研究认为:INPEFA频谱分析与小波变换分析技术可有效地运用于断陷湖盆深湖层系高频层序划分;北部湾盆地海中凹陷深湖层系流沙港组二段可划分为1个三级层序、2个四级层序、5个五级层序,其中2个四级层序以最大湖泛面为界分为湖泊扩张体系域(TST)与湖泊收缩体系域(HST);断陷湖盆优质厚层烃源岩往往发育于湖泊扩张体系域四级层序下部初始湖泛面(T
s
)的五级层序内,虽然湖泊扩张体系域四级层序顶部最大湖泛面(M
f
s)上下紧邻的五级层序发育的烃源岩面积大,但厚度小,为次要烃源岩及良好的盖层;湖泊扩张体系域四级层序中部的五级层序往往发育湖底扇重力流相储层,其夹持发育于初始湖泛面及最大湖泛面附近的两套烃源岩之间,可共同组成良好的“三明治”式生储盖组合,该套“三明治”式生储盖组合应是下一步非常规油气勘探的重要区域。
Taking the deep lake sedimentary system of the Eocene Liushagang 2 interval in the Haizhong Depression
Beibuwan faulted lacustrine basin as an example
guided by the theory of high-resolution sequence stratigraphy
the high-frequency sequence division of the Liushagang 2 interval was carried out by means of the utilization of the maximum entropy spectrum analysis and wavelet transform analysis techniques; further
the source-reservoir intergrowth regularity of the deep lake strata in the faulted lacustrine basin was discussed
on basis of the analysis of the development rules of sedimentary system
and also the analysis of the development regularity of deep lake facies source rocks and sublacustrine fan gravity flow sandstones in the high-frequency grade-5 sequence of the Liu 2 interval. The research suggests: INPEFA spectrum analysis and wavelet transform analysis technology can be effectively applied to the high-frequency sequence division in deep lake facies strata in the faulted lake basin; the Liu 2 interval in Haizhong depression of Beibuwan Basin can be divided into one grade-3 sequence
two grade-4 sequences and five grade-5 sequences
with the grade-4 sequence being divided into two system tracts of the lake expansional system tract (TST) and the lake contraction system tract (HST)
which are interfaced by the maximum flooding lake surfurce (Mfs); High-quality thick source rocks in faulted lacustrine basins were often developed in the initial grade-5 sequence at the first lake flooding surface in the lower part of the lake expansional system tract of grade-4 sequence. Although the source rocks developed in the two grade-5 sequences closely under or over the maximum lake flooding surface at the top of the lake expansional system tract of grade-4 sequence are large in areal extent
but thin in thickness
which can thus be served as the secondary source rocks and most well cap rocks. The grade-5 sequence at the middle part of the grade-4 sequence in the lake expansion system tract often developed sublacustrine fan gravity flow facies reservoirs
which are sandwiched between the two sets of source rocks nearing the initial lake flooding surface and the maximum lake flooding surface
while all these together could form a good sandwich type source-reservoir-cap assemblage
which should be a follow-up field of unconventional oil and gas prospection.
高频层序深湖层系源储共生规律北部湾盆地海中凹陷流沙港组二段
high-frequency sequencedeep lake sedimentary systemsource-reservoir intergrowth regularityBeibuwan BasinHaizhong DepressionLiu 2 Interval
朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1): 88-101.
ZHU W L, WU J F, ZHANG G C, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins[J]. Earth Science Frontiers, 2015, 22(1): 88-101.
鲜本忠, 万锦峰, 姜在兴, 等. 断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J]. 地学前缘, 2012, 19(1): 121-135.
XIAN B Z, WAN J f, JIANG Z X, et al. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case study from Dongying Formation in Nanpu Depression[J]. Earth Science Frontiers, 2012, 19(1): 121-135.
李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气, 2015, 27(3): 1-9.
LI Y C. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3): 1-9.
傅宁, 林青, 王柯. 北部湾盆地主要凹陷流沙港组二段主力烃源岩再评价[J]. 中国海上油气, 2017, 29(5): 12-21.
FU N, LIN Q, WANG K. Main source rock reevaluation of Member 2 of Liushagang Formation in the sags of Beibuwan basin[J]. China Offshore Oil and Gas, 2017, 29(5): 12-21.
杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1): 88-111.
YANG T, CAO Y C, TIAN J C. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
李友川, 兰蕾, 王柯, 等. 北部湾盆地流沙港组湖相烃源岩的差异[J]. 石油学报, 2019, 40(12): 1451-1459.
LI Y C, LAN L, WANG K, et al. Differences in lacustrine source rocks of Liushagang Formation in the Beibuwan Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1451-1459.
CROSS T A, BALER M R, CHAPIN M A, et al. Application of high resolution sequence stratigraphy to reservoir analysis: subsurface reservoir characterization from outcrop Observations[J]. Technip, 1992, 51(11): 11-33.
邓宏文. 美国层序地层研究中的新学派高分辨率层序地层学[J]. 石油与天然气地质, 1995, 16(2): 89-97.
DENG H W. A new school of thought high-resolution sequence stratigraphic studies in US[J]. Oil and Gas Geology, 1995, 16(2): 89-97.
郑荣才, 彭军, 吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报, 2001, 19(2): 249-255.
ZHENG R C, PENG J, WU C R. Grade division of base level cycles of terrigenous basin and its implications[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255.
王贵文, 邓清平, 唐为清. 测井曲线谱分析方法及其在沉积旋回研究中的应用[J]. 石油勘探与开发, 2002, 29(1): 93-95.
WANG G W, DENG Q P, TANG W Q. Spectral analysis method of logging curve and its application in sedimentary cycle research[J]. Petroleum Exploration and Development, 2002, 29(1): 93-95.
NIO S D, BROUWER J, SMITH D, et al. Spectral trend attribute analysis: Applications in the stratigraphic analysis of wireline logs[J]. First Break, 2005, 23(4): 71-75.
BAPPA M, SRIVARDHAN P. Identification of formation interfaces by using wavelet and Fourier transforms[J]. Journal of Applied Geophysics, 2016, 128: 140-149.
张强, 吴智平, 颜世永, 等. 北部湾盆地北部坳陷古近系构造发育特征及其对沉积的控制作用[J]. 高校地质学报, 2018, 24(6): 787-799.
ZHANG Q, WU Z P, YAN S Y, et al. Structural development characteristics of the Paleogene in the northern depression of the Beibu Gulf Basin and its control on sedimentation [J]. Geological Journal of China Universities, 2018, 24(6): 787-799.
康西栋, 赵文翠, 潘治贵, 等. 北部湾盆地层序地层格架及其内部构成[J]. 地球科学, 1994, 19(4): 493-502.
KANG X D, ZHAO W C, PAN Z G, et al. Study on architecture of sequence stratigraphic framework of Beibuwan Basin[J]. Earth Science, 1994, 19(4): 493-502.
席敏红, 余学兵, 黄建军. 涠西南凹陷(西部)古近系层序地层及沉积特征研究[J]. 海洋石油, 2007, 27(3): 1-12.
XI M H, YU X B, HUANG J J. Paleogene stratigraphic sequence and sedimentary feature in the west of Weixinan Depression[J]. Offshore Oil, 2007, 27(3): 1-12.
李媛, 王华, 刘恩涛, 等. 北部湾盆地福山凹陷层序地层格架下油气藏分布规律与控制因素[J]. 中南大学学报(自然科学版), 2014, 45(5): 1542-1554.
LI Y, WANG H, LIU E T, et al. Distribution regularities and control factors for reservoir formation within sequence stratigraphic framework in Fushan Sag, Beibuwan Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1542-1554.
杜振川, 魏魁生. 南海北部湾盆地北部凹陷涠洲组层序地层格架及特征[J]. 沉积学报, 2001, 19(4): 563-568.
DU Z C, WEI K S. Sequence stratigraphic framework and its characteristics of the Weizhou Formation in North Sag of Beibuwan Basin[J]. Acta Sedimentologica Sinica, 2001, 19(4): 563-568.
孙晓晗, 屈红军, 黄苏卫, 等. 高分辨率层序地层学在北部湾盆地重点层系选段中的应用[J]. 古地理学报, 2024, 26(2): 1-12.
SUN X H, QU H J, HUANG S W, et al. Application of high-resolution sequence stratigraphy in the selection of key strata in the Beibu Gulf Basin[J]. Journal of Paleogeography, 2024, 26(2): 1-12.
马庆林, 赵淑娥, 廖远涛, 等. 北部湾盆地福山凹陷古近系流沙港组层序地层样式及其研究意义[J]. 地球科学(中国地质大学学报), 2012, 37(4): 667-678.
MA Q L, ZHAO S E, LIAO Y T, et al. The sequence stratigraphic style of Paleogene Liushagang Formation in Fushan Sag, Beibuwan Basin and its research significance[J]. Earth Science (Journal of China University of Geosciences), 2012, 37(4): 667-678.
朱伟林, 吴国瑄, 黎明碧. 南海北部陆架北部湾盆地古湖泊与烃源条件[J]. 海洋与湖沼, 2004, 4(1): 8-14.
ZHU W L, WU G X, LI M B. Palaeolimology and hydrocarbon potential in Beibu Gulf Basin of South China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 4(1): 8-14.
张智武, 刘志峰, 张功成, 等. 北部湾盆地裂陷期构造及演化特征[J]. 石油天然气学报, 2013, 35(1): 6-10.
ZHANG Z W, LIU Z F, ZHANG G C, et al. Tectonic and evolutionary characteristics of Beibu Gulf Basin during rifting period[J]. Journal of Oil and Gas Technology, 2013, 35(1): 6-10.
张佰涛, 唐金炎, 王文军, 等. 北部湾盆地北部坳陷构造-沉积特征及其演化[J]. 海洋石油, 2014, 34(2): 7-12.
ZHANG B T, TANG J Y, WANG W J, et al. Characteristics of tectonic sedimentary evolution in Northern Depression of Beibuwan Basin[J]. Offshaore Oil, 2014, 34(2): 7-12.
徐建永, 张功成, 梁建设, 等. 北部湾盆地古近纪幕式断陷活动规律及其与油气的关系[J]. 中国海上油气, 2011, 23(6): 362-368.
XU J Y, ZHANG G C, LIANG J S, et al. Paleogene activities of episodic rifting and their relationships with hydrocarbon in Beibuwan Basin[J]. China Offshore Oil and Gas, 2011, 23(6): 362-368.
李春荣, 张功成, 梁建设, 等. 北部湾盆地断裂构造特征及其对油气的控制作用[J]. 石油学报, 2012, 33(2): 195-203.
LI C R, ZANG G C, LIANG J S, et al. Characteristics of fault structure and its control on hydrocarbons in Beibuwan Basin[J]. Acta Petrolei Sinica, 2012, 33(2): 195-203.
赵志刚, 吴景富, 李春荣. 北部湾盆地洼陷优选与油气分布[J]. 石油实验地质, 2013, 35(3): 285-290.
ZHAO Z G, WU J F, LI C R. Sub-sag sorting and petroleum distribution in Beibuwan Basin[J]. Petroleum Geology and Experiment, 2013, 35(3): 285-290.
武龙发, 屈红军, 黄苏卫, 等. 北部湾盆地海中凹陷涠三段沉积体系与沉积模式[J]. 天然气地球科学, 2023, 34(2): 312-325.
WU L F, QU H J, HUANG S W, et al. Depositional systems and model of the Member 3 Weizhou Formation in Haizhong Sag, Beibuwan Basin[J]. Natural Gas Geoscience, 2023, 34(2): 312-325.
姚天星, 屈红军, 黄苏卫, 等. 北部湾盆地海中凹陷流二段沉积体系及沉积模式[J]. 海洋地质前沿, 2023, 39(11): 50-62.
YAO T X, QU H J, HUANG S W, et al. Sedimentary system and depositional model of the second member of the Liushagang Formation in Haizhong Sag in Beibuwan Basin[J]. Marine Geology Frontiers, 2023, 39(11): 50-62.
杨希冰. 南海北部北部湾盆地油气藏形成条件[J]. 中国石油勘探, 2016, 21(4): 85-92.
YANG X B. Hydrocarbon accumulation conditions in Beibu Gulf Basin, northern South China Sea[J]. China Petroleum Exploration, 2016, 21(4): 85-92.
刘贤, 葛家旺, 赵晓明, 等 东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别[J]. 石油与天然气地质, 2022, 43(4): 990-1004.
LIU X, GE J W, ZHAO X M, et al. Quantitative identification of chronograph and sequence interface of Oligocene Huagang Formation in Xihu Sag, East China Sea Shelf Basin[J]. Oil and Gas Geology, 2022, 43(4): 990-1004.
DAUBECHIES C I. The wavelets transform, time-frequency localization and signal analysis[J]. IEEE Trans Information Theory, 1991, 37(4): 961-1005.
李庆谋, 刘少华. 地球物理测井序列的小波波谱方法[J]. 地球物理学进展, 2002, 17(1): 78-83.
LI Q M, LIU S H. Wavelet spectrum method for geophysical logging sequence[J]. Progress in Geophysics, 2002, 17(1): 78-83.
MULDER T, SYVITSKI J. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103(3): 285-299.
王修平, 李倩, 陈晶. 北部湾盆地海中凹陷流体动力场特征及油气成藏意义[J]. 海洋石油, 2017, 37(3): 1-6.
WANG X P, LI Q, CHEN J. Characteristics of fluid dynamic field and its significance to the accumulation of Hydrocarbons in Haizhong Sag of Beibuwan Basin[J]. Offshore Oil, 2017, 37(3): 1-6.
李友川, 王柯, 兰蕾. 北部湾盆地主要凹陷油气差异性及其控制因素[J]. 中国海上油气, 2020, 32(5): 1-8.
LI Y C, WANG K, LAN L. Oil and gas differences and their controlling factors of the main sags in the Beibuwan Basin[J]. China Offshore Oil and Gas, 2020, 32(5): 1-8.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构