浏览全部资源
扫码关注微信
1.北京师范大学 水科学研究院,北京 100875
2.北京市水科学技术研究院,北京 100048
刘艺欣,女,从事水文学及水资源研究,liuyixin@mail.bnu.edu.cn。
王红瑞,男,教授,博士生导师,从事水资源系统分析研究,henrywang@bnu.edu.cn。
纸质出版日期:2024-06-25,
收稿日期:2024-01-14,
扫 描 看 全 文
刘艺欣, 李永坤, 张力, 等. 变化环境下城市流域径流演变及响应研究[J]. 西北大学学报(自然科学版), 2024,54(3):345-354.
LIU Yixin, LI Yongkun, ZHANG Li, et al. Urban watershed runoff evolution and the response under changing environment[J]. Journal of Northwest University (Natural Science Edition), 2024,54(3):345-354.
刘艺欣, 李永坤, 张力, 等. 变化环境下城市流域径流演变及响应研究[J]. 西北大学学报(自然科学版), 2024,54(3):345-354. DOI: 10.16152/j.cnki.xdxbzr.2024-03-001.
LIU Yixin, LI Yongkun, ZHANG Li, et al. Urban watershed runoff evolution and the response under changing environment[J]. Journal of Northwest University (Natural Science Edition), 2024,54(3):345-354. DOI: 10.16152/j.cnki.xdxbzr.2024-03-001.
流域径流是变化环境的重要响应要素,在气候变化和人类活动的影响下,流域径流量已经发生了深刻变化,研究其演变及响应特征有助于提高人类对变化环境的应对能力。以北运河北京市域主要集水区为研究区,通过分析水文气象观测站近40年水文数据,分析北运河流域降水径流变化趋势,提取洪水场次;引入全球气候模式数据,利用降尺度模型进行降尺度处理,与水文模型结合对流域径流进行了预报分析。结果表明:流域历史降水趋势性变化不明显,径流量呈增大趋势;未来北运河流域(通县站)水资源的变化在气候变化影响下较为明显,随着温度升高、降水增加,流量增大,预测流量在21世纪中期达到新高,为385.1 m
3
/s;随着辐射强迫的持续增加,水文响应程度也相应增大,北运河流域大部分径流峰值出现在2050时期后期和2090时期。研究结果可为城市流域未来水资源利用、防洪减灾措施与双碳目标的实现路径的探索提供一定的参考。
Basin runoff is an important response factor to changing environment. Under the influence of climate change and human activities
watershed runoff has undergone profound changes. Studying its evolution and response characteristics is helpful to improve human’s ability to cope with changing environment. Taking the main catchment area of the Beijing municipal area of the North Canal as the study area
the variation trend of rainfall and runoff in the North Canal basin was analyzed by analyzing the hydrological data of hydrometeorological observation stations in the past 40 years
and the flood field was extracted. The global clim
ate model data is introduced
the downscaling model is used for downscaling
and the runoff forecast is analyzed in combination with the hydrological model. The results show that the historical precipitation trend of the basin is not obvious
and the runoff is increasing. In the future
the change of water resources in the North Canal Basin (Tongxian Station) will be more obvious under the influence of climate change. With the increase of temperature and precipitation
the runoff will increase
and the discharge is predicted to reach a new high of 385.1m
3
/s in the middle of this century.With the continuous increase of radiative forcing
the degree of hydrological response increases correspondingly
and most of the peak runoff in the North Canal basin occurs in the late 2050 and 2090 periods. The research can provide some reference for the future water resource utilization
flood containment and disaster reduction measures and the realization path of dual carbon targets in urban watershed.
气候变化流域径流径流预报双碳目标
climate changewatershed runoffrunoff forecastcarbon peaking and carbon neutrality goals
叶佰生, 丁永建, 康尔泗, 等. 近40a来新疆地区冰雪径流对气候变暖的响应[J]. 中国科学(D辑:地球科学), 1999, 29(S1): 40-46.
TE M S, DING Y J, KANG E S, et al. Response of snow and ice runoff to climate warming in Xinjiang in recent 40 years[J]. Scientia Sinica(Terrae), 1999(S1): 40-46.
周婷, 于福亮, 李传哲, 等. 湄公河清盛站水文情势变化分析[J]. 水电能源科学, 2011, 29(11): 15-18,209.
ZHOU T, YU F L, LI C Z, et al. Analysis of hydrological regime changes of chiang saen station in Mekong River[J]. Water Resources and Power, 2011, 29(11): 15-18,209.
陈鑫, 刘艳丽, 刁艳芳, 等. 关河水库流域水文序列突变诊断与非一致性研究[J]. 中国农村水利水电, 2020(5): 28-32.
CHEN X, LIU Y L, DIAO Y F, et al. Research on the diagnosis of hydrologic series abrupt changes and inconsistency in Guanhe Reservoir Basin[J]. China Rural Water and Hydropower, 2020(5): 28-32.
CARLSON R F, MACCORMICK A J A, WATTS D G. Application of linear random models to four annual streamflow series[J]. Water Resources Research, 1970, 6(4): 1070-1078.
APOSTOLOPOULOS T K, GEORGAKAKOS K P. Parallel computation for streamflow prediction with distributed hydrologic models[J]. Journal of Hydrology, 1997, 197(1/2/3/4): 1-24.
张力, 王红瑞, 郭琲楠, 等. 基于时序分解与机器学习的非平稳径流序列集成模型与应用[J]. 水科学进展, 2023, 34(1): 42-52.
ZHANG L, WANG H R, GUO F N, et al. Integrated model and application of non-stationary runoff based on time series decomposition and machine learning[J]. Advances in Water Science, 2023, 34(1): 42-52.
SHAMSELDIN A Y, O’CONNOR K M, CONNOR . A real-time combination method for the outputs of different rainfall-runoff models[J]. Hydrological Sciences Journal, 1999, 44(6): 895-912.
HONG M, WANG D, WANG Y, et al. Mid-and long-term runoff predictions by an improved phase-space reconstruction model[J]. Environmental Research, 2016, 11(24): 1-14.
CHEN H, XU C Y, GUO S L. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff[J]. Journal of Hydrology, 2012, 434-435: 36-45.
左其亭, 邱曦, 马军霞, 等. 黄河治水思想演变及现代治水方略[J]. 水资源与水工程学报, 2023, 34(3): 1-9.
ZUO Q T, QIU X, MA J X, et al. Evolution of flood control thought and modern flood control straregy in the Yellow River Basin[J]. Journal of Water Resources and Water Engineering, 2023, 34(3): 1-9.
王红瑞, 赵含, 李占玲, 等. 减碳与生物多样性若干问题评述[J]. 西北大学学报(自然科学版), 2023, 53(1): 17-24.
WANG H R, ZHAO H, LI Z L, et al. Review on some issues of carbon reduction and biodiversity[J]. Journal of Northwest University(Natural Science Edition), 2023, 53(1): 17-24.
孙才志, 段兴杰. 黄河流域水资源-能源-粮食系统生态可持续发展能力评价[J]. 人民黄河, 2023, 45(2): 85-90,96.
SUN C Z, DUAN X J. Ecological sustainable development capacity assessment of water-energy-food system in the Yellow River Basin[J]. Yellow River, 2023 45(2): 85-90,96.
袁冯, 张君枝, 王冀, 等. 气候变化背景下北京市短历时暴雨的强度及雨型变化特征[J]. 大气科学学报, 2020, 43(5): 802-809.
YUAN F, ZHANG J Z, WANG J, et al. Variation characteristics of intensity and pattern of short duration rainstorm in Beijing under the background of climate change[J]. Transactions of Atmospheric Sciences, 2020, 43(5): 802-809.
张力, 赵自阳, 王红瑞, 等. 气候变化下水文模拟不确定性若干问题讨论[J]. 水资源保护, 2023, 39(1): 109-118,149.
ZHANG L, ZHAO Z Y, WANG H R, et al. Discussion on several issues of uncertainty in hydrological simulation under climate change[J]. Water Resources Protection, 2023, 39(1): 109-118,149.
刘浩. 澜沧江流域历史径流变化归因和未来径流变化预估[D]. 上海: 华东师范大学, 2022.
程旭, 马细霞, 王武森, 等. HEC-HMS 模型参数区域化在河南省小流域适用性研究[J]. 水文, 2022, 42(1): 40-46,102.
CHENG X, MA X X, WANG W S, et al. Applicability Research of HEC-HMS model parameter regionalization in small basin of Henan Province[J]. Journal of China Hydrology, 2022, 42(1): 40-46,102.
RAD S, DAI J F, XU J X, et al. Lijiang flood characteristics and implication of karst storage through Muskingum flood routing via HEC-HMS, S. China[J]. Hydrology Research, 2022, 53(12): 1480-1493.
宋世凯, 王海龙, 郎子龙, 等. 基于HEC-HMS模型的太行山小流域山洪模拟研究:以邢台路罗川流域为例[J]. 灾害学, 2023, 38(1): 117-124.
SONG S K, WANG H L, LANG Z L, et al. Mountain flood simulation of small basin in Taihang Mountains using HEC-HMS model: A case study of Luluochuan River Basin[J]. Journal of Catastrophology, 2023, 38(1): 117-124.
WANG W C, TIAN W C, XU D M, et al.Muskingum models’ development and their parameter estimation: A state-of-the-art review[J]. Water Resources Management, 2023, 37(8): 3129-3150.
王庆明, 赵勇, 王浩, 等. 自然和社会水循环的能量驱动机制及其综合评价[J]. 水资源保护, 2023, 39(6): 1-7,15.
WANG Q M, ZHAO Y, WANG H, et al. Energy driving mechanism of natural and social hydrology cycle and its comprehensive evaluation[J]. Water Resources Protection, 2023, 39(6): 1-7,15.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构